scholarly journals Inhibition of the αvβ6 integrin leads to limited alteration of TGF-α-induced pulmonary fibrosis

2014 ◽  
Vol 306 (8) ◽  
pp. L726-L735 ◽  
Author(s):  
Satish K. Madala ◽  
Thomas R. Korfhagen ◽  
Stephanie Schmidt ◽  
Cynthia Davidson ◽  
Ramakrishna Edukulla ◽  
...  

A number of growth factors and signaling pathways regulate matrix deposition and fibroblast proliferation in the lung. The epidermal growth factor receptor (EGFR) family of receptors and the transforming growth factor-β (TGF-β) family are active in diverse biological processes and are central mediators in the initiation and maintenance of fibrosis in many diseases. Transforming growth factor-α (TGF-α) is a ligand for the EGFR, and doxycycline (Dox)-inducible transgenic mice conditionally expressing TGF-α specifically in the lung epithelium develop progressive fibrosis accompanied with cachexia, changes in lung mechanics, and marked pleural thickening. Although recent studies demonstrate that EGFR activation modulates the fibroproliferative effects involved in the pathogenesis of TGF-β induced pulmonary fibrosis, in converse, the direct role of EGFR induction of the TGF-β pathway in the lung is unknown. The αvβ6 integrin is an important in vivo activator of TGF-β activation in the lung. Immunohistochemical analysis of αvβ6 protein expression and bronchoalveolar analysis of TGF-β pathway signaling indicates activation of the αvβ6/TGF-β pathway only at later time points after lung fibrosis was already established in the TGF-α model. To determine the contribution of the αvβ6/TGF-β pathway on the progression of established fibrotic disease, TGF-α transgenic mice were administered Dox for 4 wk, which leads to extensive fibrosis; these mice were then treated with a function-blocking anti-αvβ6 antibody with continued administration of Dox for an additional 4 wk. Compared with TGF-α transgenic mice treated with control antibody, αvβ6 inhibition significantly attenuated pleural thickening and altered the decline in lung mechanics. To test the effects of genetic loss of the β6 integrin, TGF-α transgenic mice were mated with β6-null mice and the degree of fibrosis was compared in adult mice following 8 wk of Dox administration. Genetic ablation of the β6 integrin attenuated histological and physiological changes in the lungs of TGF-α transgenic mice although a significant degree of fibrosis still developed. In summary, inhibition of the β6 integrin led to a modest, albeit significant, effect on pleural thickening and lung function decline observed with TGF-α-induced pulmonary fibrosis. These data support activation of the αvβ6/TGF-β pathway as a secondary effect contributing to TGF-α-induced pleural fibrosis and suggest a complex contribution of multiple mediators to the maintenance of progressive fibrosis in the lung.

2004 ◽  
Vol 286 (4) ◽  
pp. L741-L749 ◽  
Author(s):  
William D. Hardie ◽  
Timothy D. Le Cras ◽  
Kenny Jiang ◽  
Jay W. Tichelaar ◽  
Mohamad Azhar ◽  
...  

To determine whether overexpression of transforming growth factor (TGF)-α in the adult lung causes remodeling independently of developmental influences, we generated conditional transgenic mice expressing TGF-α in the epithelium under control of the doxycycline (Dox)-regulatable Clara cell secretory protein promoter. Two transgenic lines were generated, and following 4 days of Dox-induction TGF-α levels in whole lung homogenate were increased 13- to 18-fold above nontransgenic levels. After TGF-α induction, transgenic mice developed progressive pulmonary fibrosis and body weight loss, with mice losing 15% of their weight after 6 wk of TGF-α induction. Fibrosis was detected within 4 days of TGF-α induction and developed initially in the perivascular, peribronchial, and pleural regions but later extended into the interstitium. Fibrotic regions were composed of increased collagen and cellular proliferation and were adjacent to airway and alveolar epithelial sites of TGF-α expression. Fibrosis progressed in the absence of inflammatory cell infiltrates as determined by histology, without changes in bronchiolar alveolar lavage total or differential cell counts and without changes in proinflammatory cytokines TNF-α or IL-6. Active TGF-β in whole lung homogenate was not altered 1 and 4 days after TGF-α induction, and immunostaining was not increased in the peribronchial/perivascular areas at all time points. Chronic epithelial expression of TGF-α in adult mice caused progressive pulmonary fibrosis associated with increased collagen and extracellular matrix deposition and increased cellular proliferation. Induction of pulmonary fibrosis by TGF-α was independent of inflammation or early activation of TGF-β.


1999 ◽  
Vol 20 (5) ◽  
pp. 924-934 ◽  
Author(s):  
David K. Madtes ◽  
Andrew L. Elston ◽  
Robert C. Hackman ◽  
Ashley R. Dunn ◽  
Joan G. Clark

2016 ◽  
Vol 310 (2) ◽  
pp. L175-L186 ◽  
Author(s):  
Satish K. Madala ◽  
George Thomas ◽  
Ramakrishna Edukulla ◽  
Cynthia Davidson ◽  
Stephanie Schmidt ◽  
...  

The p70 ribosomal S6 kinase (S6K) is a downstream substrate that is phosphorylated and activated by the mammalian target of rapamycin complex and regulates multiple cellular processes associated with fibrogenesis. Recent studies demonstrate that aberrant mTORC1-S6K signaling contributes to various pathological conditions, but a direct role in pulmonary fibroproliferation has not been established. Increased phosphorylation of the S6K pathway is detected immediately following transforming growth factor-α (TGF-α) expression in a transgenic model of progressive lung fibrosis. To test the hypothesis that the S6K directly regulates pulmonary fibroproliferative disease we determined the cellular sites of S6K phosphorylation during the induction of fibrosis in the TGF-α model and tested the efficacy of specific pharmacological inhibition of the S6K pathway to prevent and reverse fibrotic disease. Following TGF-α expression increased phosphorylation of the S6K was detected in the airway and alveolar epithelium and the mesenchyme of advanced subpleural fibrotic regions. Specific inhibition of the S6K with the small molecule inhibitor LY-2584702 decreased TGF-α and platelet-derived growth factor-β-induced proliferation of lung fibroblasts in vitro. Administration of S6K inhibitors to TGF-α mice prevented the development of extensive subpleural fibrosis and alterations in lung mechanics, and attenuated the increase in total lung hydroxyproline. S6K inhibition after fibrosis was established attenuated the progression of subpleural fibrosis. Together these studies demonstrate targeting the S6K pathway selectively modifies the progression of pulmonary fibrosis in the subpleural compartment of the lung.


Author(s):  
Yifeng Luo ◽  
Hui Yi ◽  
Xinyan Huang ◽  
Gengpeng Lin ◽  
Yukun Kuang ◽  
...  

Macrophage migration inhibitory factor (MIF) inhibition can attenuates pulmonary fibrosis, but the antifibrotic mechanism is unclear. Here we investigated antifibrotic effect of MIF knockdown in Bleomycin (BLM)-induced pulmonary fibrosis rats. The result showed that MIF inhibition attenuated lung injury and extracellular matrix deposition, significantly reduced the levels of cytokines including Transforming growth factor-β1(TGF-β1), TNF-α, IL-17, hydroxyproline (hyp), fibroblast growth factor 23 (FGF23) and secreted phosphoprotein 1 (Spp1), and inhibited the expression of CD68, F4/80 and α-smooth muscle actin(α-SMA) protein. MIF inhibition is associated with reduction of pro-inflammatory mediators and macrophage infiltration in lungs. In addition, MIF knockdown in the Day14 group was significantly better than MIF knockdown in Day1 group in terms of the above cytokines. MIF knockdown in Day14 group showed a better trend than MIF knockdown in Day1 group in inhibition of hyp and α-SMA formation. Furthermore, MIF inhibition induced down-regulated the FGF23, Spp1, Itga10, Lama1, Thbs2, Serpinb5 mRNA level and p-Smad2/3 protein level. MIF knockdown may inhibit fibrosis through the TGF-β1/Smads signaling pathway. What' more, MIF inhibition protects also against vascular remodeling via Thbs2 and Serpinb5 signaling. In summary, our study showed that knockdown of MIF can significantly inhibit lung inflammation and fibrosis in BLM-induced pulmonary fibrosis rats. The future development of inhibitors targeting MIF may contribute to the treatment of pulmonary fibrosis.


Author(s):  
C. G. Plopper ◽  
C. Helton ◽  
A. J. Weir ◽  
J. A. Whitsett ◽  
T. R. Korfhagen

A wide variety of growth factors are thought to be involved in the regulation of pre- and postnatal lung maturation, including factors which bind to the epidermal growth factor receptor. Marked pulmonary fibrosis and enlarged alveolar air spaces have been observed in lungs of transgenic mice expressing human TGF-α under control of the 3.7 KB human SP-C promoter. To test whether TGF-α alters lung morphogenesis and cellular differentiation, we examined morphometrically the lungs of adult (6-10 months) mice derived from line 28, which expresses the highest level of human TGF-α transcripts among transgenic lines. Total volume of lungs (LV) fixed by airway infusion at standard pressure was similar in transgenics and aged-matched non-transgenic mice (Fig. 1). Intrapulmonary bronchi and bronchioles made up a smaller percentage of LV in transgenics than in non-transgenics (Fig. 2). Pulmonary arteries and pulmonary veins were a smaller percentage of LV in transgenic mice than in non-transgenics (Fig. 3). Lung parenchyma (lung tissue free of large vessels and conducting airways) occupied a larger percentage of LV in transgenics than in non-transgenics (Fig. 4). The number of generations of branching in conducting airways was significantly reduced in transgenics as compared to non-transgenic mice. Alveolar air space size, as measured by mean linear intercept, was almost twice as large in transgenic mice as in non-transgenics, especially when different zones within the lung were compared (Fig. 5). Alveolar air space occupied a larger percentage of the lung parenchyma in transgenic mice than in non-transgenic mice (Fig. 6). Collagen abundance was estimated in histological sections as picro-Sirius red positive material by previously-published methods. In intrapulmonary conducting airways, collagen was 4.8% of the wall in transgenics and 4.5% of the wall in non-transgenic mice. Since airways represented a smaller percentage of the lung in transgenics, the volume of interstitial collagen associated with airway wall was significantly less. In intrapulmonary blood vessels, collagen was 8.9% of the wall in transgenics and 0.7% of the wall in non-transgenics. Since blood vessels were a smaller percentage of the lungs in transgenics, the volume of collagen associated with the walls of blood vessels was five times greater. In the lung parenchyma, collagen was 51.5% of the tissue volume in transgenics and 21.2% in non-transgenics. Since parenchyma was a larger percentage of lung volume in transgenics, but the parenchymal tissue was a smaller percent of the volume, the volume of collagen associated with parenchymal tissue was only slightly greater. We conclude that overexpression of TGF-α during lung maturation alters many aspects of lung development, including branching morphogenesis of the airways and vessels and alveolarization in the parenchyma. Further, the increases in visible collagen previously associated with pulmonary fibrosis due to the overexpression of TGF-α are a result of actual increases in amounts of collagen and in a redistribution of collagen within compartments which results from morphogenetic changes. These morphogenetic changes vary by lung compartment. Supported by HL20748, ES06700 and the Cystic Fibrosis Foundation.


Metabolites ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 258
Author(s):  
Hyo Yeong Lee ◽  
Somi Nam ◽  
Mi Jeong Kim ◽  
Su Jung Kim ◽  
Sung Hoon Back ◽  
...  

Idiopathic pulmonary fibrosis (IPF) is a serious lung disease characterized by excessive collagen matrix deposition and extracellular remodeling. Signaling pathways mediated by fibrotic cytokine transforming growth factor β1 (TGF-β1) make important contributions to pulmonary fibrosis, but it remains unclear how TGF-β1 alters metabolism and modulates the activation and differentiation of pulmonary fibroblasts. We found that TGF-β1 lowers NADH and NADH/NAD levels, possibly due to changes in the TCA cycle, resulting in reductions in the ATP level and oxidative phosphorylation in pulmonary fibroblasts. In addition, we showed that butyrate (C4), a short chain fatty acid (SCFA), exhibits potent antifibrotic activity by inhibiting expression of fibrosis markers. Butyrate treatment inhibited mitochondrial elongation in TGF-β1-treated lung fibroblasts and increased the mitochondrial membrane potential (MMP). Consistent with the mitochondrial observations, butyrate significantly increased ADP, ATP, NADH, and NADH/NAD levels in TGF-β1-treated pulmonary fibroblasts. Collectively, our findings indicate that TGF-β1 induces changes in mitochondrial dynamics and energy metabolism during myofibroblast differentiation, and that these changes can be modulated by butyrate, which enhances mitochondrial function.


2007 ◽  
Vol 204 (5) ◽  
pp. 1083-1093 ◽  
Author(s):  
Hye-Ryun Kang ◽  
Chun Geun Lee ◽  
Robert J. Homer ◽  
Jack A. Elias

Semaphorin (SEMA) 7A regulates neuronal and immune function. In these studies, we tested the hypothesis that SEMA 7A is also a critical regulator of tissue remodeling. These studies demonstrate that SEMA 7A and its receptors, plexin C1 and β1 integrins, are stimulated by transforming growth factor (TGF)-β1 in the murine lung. They also demonstrate that SEMA 7A plays a critical role in TGF-β1–induced fibrosis, myofibroblast hyperplasia, alveolar remodeling, and apoptosis. TGF-β1 stimulated SEMA 7A via a largely Smad 3–independent mechanism and stimulated SEMA 7A receptors, matrix proteins, CCN proteins, fibroblast growth factor 2, interleukin 13 receptor components, proteases, antiprotease, and apoptosis regulators via Smad 2/3–independent and SEMA 7A–dependent mechanisms. SEMA 7A also played an important role in the pathogenesis of bleomycin-induced pulmonary fibrosis. TGF-β1 and bleomycin also activated phosphatidylinositol 3-kinase (PI3K) and protein kinase B (PKB)/AKT via SEMA 7A–dependent mechanisms, and PKB/AKT inhibition diminished TGF-β1–induced fibrosis. These observations demonstrate that SEMA 7A and its receptors are induced by TGF-β1 and that SEMA 7A plays a central role in a PI3K/PKB/AKT-dependent pathway that contributes to TGF-β1–induced fibrosis and remodeling. They also demonstrate that the effects of SEMA 7A are not specific for transgenic TGF-β1, highlighting the importance of these findings for other fibrotic stimuli.


Sign in / Sign up

Export Citation Format

Share Document