Disparate mechanisms of sICAM-1 production in the peripheral lung: contrast between alveolar epithelial cells and pulmonary microvascular endothelial cells

2008 ◽  
Vol 294 (4) ◽  
pp. L807-L814 ◽  
Author(s):  
Michael P. Mendez ◽  
Susan B. Morris ◽  
Steven Wilcoxen ◽  
Ming Du ◽  
Yeni K. Monroy ◽  
...  

Membrane-associated intercellular adhesion molecule-1 (mICAM-1; CD54) is constitutively expressed on the surface of type I alveolar epithelial cells (AEC). Soluble ICAM-1 (sICAM-1) may be produced by proteolytic cleavage of mICAM-1 or by alternative splicing of ICAM-1 mRNA. In contrast to inducible expression seen in most cell types, sICAM-1 is constitutively released by type I AEC and is present in normal alveolar lining fluid. Therefore, we compared the mechanism of sICAM-1 production in primary cultures of two closely juxtaposed cells in the alveolar wall, AEC and pulmonary microvascular endothelial cells (PVEC). AEC, but not PVEC, demonstrated high-level baseline expression of sICAM-1. Stimulation of AEC with TNFα or LPS resulted in minimal increase in AEC sICAM-1, whereas PVEC sICAM-1 was briskly induced in response to these signals. AEC sICAM-1 shedding was significantly reduced by treatment with a serine protease inhibitor, but not by cysteine, metalloprotease, or aspartic protease inhibitors. In contrast, none of these inhibitors effected sICAM-1 expression in PVEC. RT-PCR, followed by gel analysis of total RNA, suggests that alternatively spliced fragments are present in both cell types. However, a 16-mer oligopeptide corresponding to the juxtamembrane region of mICAM-1 completely abrogated sICAM-1 shedding in AEC but reduced stimulated PVEC sICAM-1 release by only 20%. Based on these data, we conclude that the predominant mechanism of sICAM-1 production likely differs in the two cell types from opposite sides of the alveolar wall.

1995 ◽  
Vol 269 (1) ◽  
pp. L127-L135 ◽  
Author(s):  
W. W. Barton ◽  
S. Wilcoxen ◽  
P. J. Christensen ◽  
R. Paine

Intercellular adhesion molecule-1 (ICAM-1) is expressed at high levels on type I alveolar epithelial cells in the normal lung and is induced in vitro as type II cells spread in primary culture. In contrast, in most nonhematopoetic cells ICAM-1 expression is induced in response to inflammatory cytokines. We have formed the hypothesis that the signals that control ICAM-1 expression in alveolar epithelial cells are fundamentally different from those controlling expression in most other cells. To test this hypothesis, we have investigated the influence of inflammatory cytokines on ICAM-1 expression in isolated type II cells that have spread in culture and compared this response to that of rat pulmonary artery endothelial cells (RPAEC). ICAM-1 protein, determined both by a cell-based enzyme-linked immunosorbent assay and by Western blot analysis, and mRNA were minimally expressed in unstimulated RPAEC but were significantly induced in a time- and dose-dependent manner by treatment with tumor necrosis factor-alpha, interleukin-1 beta, or interferon-gamma. In contrast, these cytokines did not influence the constitutive high level ICAM-1 protein expression in alveolar epithelial cells and only minimally affected steady-state mRNA levels. ICAM-1 mRNA half-life, measured in the presence of actinomycin D, was relatively long at 7 h in alveolar epithelial cells and 4 h in RPAEC. The striking lack of response of ICAM-1 expression by alveolar epithelial cells to inflammatory cytokines is in contrast to virtually all other epithelial cells studied to date and supports the hypothesis that ICAM-1 expression by these cells is a function of cellular differentiation.(ABSTRACT TRUNCATED AT 250 WORDS)


2002 ◽  
Vol 70 (1) ◽  
pp. 140-146 ◽  
Author(s):  
Luiz E. Bermudez ◽  
Felix J. Sangari ◽  
Peter Kolonoski ◽  
Mary Petrofsky ◽  
Joseph Goodman

ABSTRACT The mechanism(s) by which Mycobacterium tuberculosis crosses the alveolar wall to establish infection in the lung is not well known. In an attempt to better understand the mechanism of translocation and create a model to study the different stages of bacterial crossing through the alveolar wall, we established a two-layer transwell system. M. tuberculosis H37Rv was evaluated regarding the ability to cross and disrupt the membrane. M. tuberculosis invaded A549 type II alveolar cells with an efficiency of 2 to 3% of the initial inoculum, although it was not efficient in invading endothelial cells. However, bacteria that invaded A549 cells were subsequently able to be taken up by endothelial cells with an efficiency of 5 to 6% of the inoculum. When incubated with a bicellular transwell monolayer (epithelial and endothelial cells), M. tuberculosis translocated into the lower chamber with efficiency (3 to 4%). M. tuberculosis was also able to efficiently translocate across the bicellular layer when inside monocytes. Infected monocytes crossed the barrier with greater efficiency when A549 alveolar cells were infected with M. tuberculosis than when A549 cells were not infected. We identified two potential mechanisms by which M. tuberculosis gains access to deeper tissues, by translocating across epithelial cells and by traveling into the blood vessels within monocytes.


1996 ◽  
Vol 271 (5) ◽  
pp. L707-L718 ◽  
Author(s):  
W. W. Barton ◽  
S. E. Wilcoxen ◽  
P. J. Christensen ◽  
R. Paine

Intercellular adhesion molecule-1 ICAM-1) is a transmembrane adhesion protein that is expressed constitutively on the apical surface of type I cells in vivo and on type II cells in vitro as they spread in culture, assuming type I cell-like characteristics. To investigate the possible interaction of ICAM-1 with the alveolar epithelial cell cytoskeleton, rat type II cells in primary culture were extracted with nonionic detergent, and residual ICAM-1 associated with the cytoskeletal remnants was determined using immunofluorescence microscopy, immunoprecipitation, and cell-based enzyme-linked immunosorbent assay. A large fraction of alveolar epithelial cell ICAM-1 remained associated with the cytoskeleton after detergent extraction, whereas two other transmembrane molecules, transferrin receptor and class II major histocompatibility complex, were completely removed. ICAM-1 was redistributed on the cell surface after the disruption of actin filaments with cytochalasin B, suggesting interaction with the actin cytoskeleton. In contrast, ICAM-1 was completely detergent soluble in rat pulmonary artery endothelial cells, human umbilical vein endothelial cells, and rat alveolar macrophages. The association of ICAM-1 with the alveolar epithelial cell cytoskeleton was not altered after stimulation with inflammatory cytokines. However, detergent resistant ICAM-1 was significantly increased after crosslinking of ICAM-1 on the cell surface, suggesting that this cytoskeletal association may be modulated by interactions of alveolar epithelial cells with inflammatory cells. The association of ICAM-1 with the cytoskeleton in alveolar epithelial cells may provide a fixed intermediary between mobile inflammatory cells and the alveolar surface.


Sign in / Sign up

Export Citation Format

Share Document