Neurotrophin effects on intracellular Ca2+ and force in airway smooth muscle

2006 ◽  
Vol 291 (3) ◽  
pp. L447-L456 ◽  
Author(s):  
Y. S. Prakash ◽  
Adeyemi Iyanoye ◽  
Binnaz Ay ◽  
Carlos B. Mantilla ◽  
Christina M. Pabelick

Neurotrophins [e.g., brain-derived neurotrophic factor (BDNF), neurotrophin 4 (NT4)], known to affect neuronal structure and function, are expressed in nonneuronal tissues including the airway. However, their function is unclear. We examined the effect of acute vs. prolonged neurotrophin exposure on regulation of airway smooth muscle (ASM) intracellular Ca2+ concentration ([Ca2+]i): sarcoplasmic reticulum (SR) Ca2+ release and Ca2+ influx (specifically store-operated Ca2+ entry, SOCE). Human ASM cells were incubated for 30 min in medium (control) or 1 or 10 nM BDNF, NT3, or NT4 (acute exposure) or overnight in 1 nM BDNF, NT3, or NT4 (prolonged exposure) and imaged after loading with the Ca2+ indicator fura-2 AM. [Ca2+]i responses to ACh, histamine, bradykinin, and caffeine and SOCE following SR Ca2+ depletion were compared across cell groups. Force measurements were performed in human bronchial strips exposed to neurotrophins. Basal [Ca2+]i, peak responses to all agonists, SOCE, and force responses to ACh and histamine were all significantly enhanced by both acute and prolonged BDNF exposure (smaller effect of NT4) but decreased by NT3. Inhibition of the BDNF/NT4 receptor trkB by K252a prevented enhancement of [Ca2+]i responses. ASM cells showed positive immunostaining for BDNF, NT3, NT4, trkB, and trkC (NT3 receptor). These novel data demonstrate that neurotrophins influence ASM [Ca2+]i and force regulation and suggest a potential role for neurotrophins in airway diseases.

1998 ◽  
Vol 274 (6) ◽  
pp. L951-L957 ◽  
Author(s):  
Michael J. Maxwell ◽  
Roy G. Goldie ◽  
Peter J. Henry

The possibility that significant changes in endothelin (ET)A- and ETB-receptor density and function occur in airway smooth muscle cells (ASMCs) during cell growth and extended cell culture was investigated in sheep tracheal ASMCs. As in intact tracheal smooth muscle tissue from this species, early-passage sheep ASMCs contained a homogeneous population of ETA receptors. However, growth of ASMCs from seeding to postconfluence and repeated passage of ASMCs (6th to 14th passages) was associated with a substantial increase in ETB-receptor density, with no change in ETA-receptor density. ET-1-induced stimulation of ETBreceptors increased the intracellular Ca2+ concentration in single ASMCs. Interestingly, a 2-day period of serum deprivation completely eliminated the increase in ETB-receptor density and the ETB receptor-mediated change in intracellular Ca2+ concentration. In summary, growth and repeated passage of sheep ASMCs were associated with a profound and selective increase in the density and function of the ETB receptor, a receptor subtype not present in early-passage ASMCs and not detected in intact sheep tracheal airway smooth muscle.


Author(s):  
Colleen M Bartman ◽  
Aleksey Matveyenko ◽  
Christina M Pabelick ◽  
Y. S. Prakash

Supplemental O2 (hyperoxia) is necessary for preterm infant survival but is associated with development of bronchial airway hyperreactivity and childhood asthma. Understanding early mechanisms that link hyperoxia to altered airway structure and function are key to developing advanced therapies. We previously showed that even moderate hyperoxia (50% O2) enhances intracellular calcium ([Ca2+]i) and proliferation of human fetal airway smooth muscle (fASM), thereby facilitating bronchoconstriction and remodeling. Here, we introduce cellular clock biology as a novel mechanism linking early oxygen exposure to airway biology. Peripheral, intracellular clocks are a network of transcription-translation feedback loops that produce circadian oscillations with downstream targets highly relevant to airway function and asthma. Premature infants suffer circadian disruption while entrainment strategies improve outcomes, highlighting the need to understand relationships between clocks and developing airways. We hypothesized that hyperoxia impacts clock function in fASM and that the clock can be leveraged to attenuate deleterious effects of O2 on the developing airway. We report that human fASM express core clock machinery (PER1, PER2, CRY1, ARNTL/BMAL1, CLOCK) that is responsive to dexamethasone and altered by O2. Disruption of the clock via siRNA-mediated PER1 or ARNTL knockdown alters store-operated calcium entry (SOCE) and [Ca2+]i response to histamine in hyperoxia. Effects of O2 on [Ca2+]i are rescued by driving expression of clock proteins, via effects on the Ca2+ channels IP3R and Orai1. These data reveal a functional fASM clock that modulates [Ca2+]i regulation, particularly in hyperoxia. Harnessing clock biology may be a novel therapeutic consideration for neonatal airway diseases following prematurity.


2021 ◽  
Vol 12 ◽  
Author(s):  
Anne M. Roesler ◽  
Jovanka Ravix ◽  
Colleen M. Bartman ◽  
Brijeshkumar S. Patel ◽  
Marta Schiliro ◽  
...  

Supplemental O2 (hyperoxia), necessary for maintenance of oxygenation in premature infants, contributes to neonatal and pediatric airway diseases including asthma. Airway smooth muscle (ASM) is a key resident cell type, responding to hyperoxia with increased contractility and remodeling [proliferation, extracellular matrix (ECM) production], making the mechanisms underlying hyperoxia effects on ASM significant. Recognizing that fetal lungs experience a higher extracellular Ca2+ ([Ca2+]o) environment, we previously reported that the calcium sensing receptor (CaSR) is expressed and functional in human fetal ASM (fASM). In this study, using fASM cells from 18 to 22 week human fetal lungs, we tested the hypothesis that CaSR contributes to hyperoxia effects on developing ASM. Moderate hyperoxia (50% O2) increased fASM CaSR expression. Fluorescence [Ca2+]i imaging showed hyperoxia increased [Ca2+]i responses to histamine that was more sensitive to altered [Ca2+]o, and promoted IP3 induced intracellular Ca2+ release and store-operated Ca2+ entry: effects blunted by the calcilytic NPS2143. Hyperoxia did not significantly increase mitochondrial calcium which was regulated by CaSR irrespective of oxygen levels. Separately, fASM cell proliferation and ECM deposition (collagens but not fibronectin) showed sensitivity to [Ca2+]o that was enhanced by hyperoxia, but blunted by NPS2143. Effects of hyperoxia involved p42/44 ERK via CaSR and HIF1α. These results demonstrate functional CaSR in developing ASM that contributes to hyperoxia-induced contractility and remodeling that may be relevant to perinatal airway disease.


2009 ◽  
Vol 39 (11) ◽  
pp. 1684-1692 ◽  
Author(s):  
R. Saunders ◽  
A. Sutcliffe ◽  
D. Kaur ◽  
S. Siddiqui ◽  
F. Hollins ◽  
...  

2019 ◽  
Vol 26 (12) ◽  
pp. 1650-1660
Author(s):  
Lily He ◽  
Gene T. Lee ◽  
Helen Zhou ◽  
Irina A. Buhimschi ◽  
Catalin S. Buhimschi ◽  
...  

Objective: Calmodulin (CaM) plays a key role in the orchestration of Ca2+ signaling events, and its regulation is considered an important component of cellular homeostasis. The control of uterine smooth muscle function is largely dependent on the regulation of Ca2+ and CaM signaling. The objective of this study was to investigate the expression, function, and regulation of CaM regulatory proteins in myometrium during pregnancy. Study Design: Myometrium was obtained from nonpregnant women and 4 groups of pregnant women at the time their primary cesarean delivery: (i) preterm not in labor, (ii) preterm in labor with clinical and/or histological diagnosis of chorioamnionitis, (3) term not in labor; and (4) term in labor. The effect of perinatal inflammation on pcp4/pep-19 expression was evaluated in a mouse model of Ureaplasma parvum-induced chorioamnionitis. Human myometrial cells stably expressing wild-type and mutant forms of PCP4/PEP-19 were used in the evaluation of agonist-induced intracellular Ca2+ mobilization. Results: Compared to other CaM regulatory proteins, PCP4/PEP-19 transcripts were more abundant in human myometrium. The expression of PCP4/PEP-19 was lowest in myometrium of women with preterm pregnancy and chorioamnionitis. In the mouse uterus, pcp4/pep-19 expression was lower in late compared to mid-gestation and decreased in mice injected intra-amniotic with Ureaplasma parvum. In myometrial smooth muscle cells, tumor necrosis factor alpha and progesterone decreased and PCP4/PEP-19 promoter activity increased. Finally, the overexpression of PCP4/PEP-19 reduced agonist-induced intracellular Ca2+ levels in myometrial cells. Conclusion: The decreased expression of PCP4/PEP-19 in myometrium contributes to a loss of quiescence in response to infection-induced inflammation at preterm pregnancy.


2007 ◽  
Vol 292 (6) ◽  
pp. L1405-L1413 ◽  
Author(s):  
Bart G. J. Dekkers ◽  
Dedmer Schaafsma ◽  
S. Adriaan Nelemans ◽  
Johan Zaagsma ◽  
Herman Meurs

Changes in the ECM and increased airway smooth muscle (ASM) mass are major contributors to airway remodeling in asthma and chronic obstructive pulmonary disease. It has recently been demonstrated that ECM proteins may differentially affect proliferation and expression of phenotypic markers of cultured ASM cells. In the present study, we investigated the functional relevance of ECM proteins in the modulation of ASM contractility using bovine tracheal smooth muscle (BTSM) preparations. The results demonstrate that culturing of BSTM strips for 4 days in the presence of fibronectin or collagen I depressed maximal contraction (Emax) both for methacholine and KCl, which was associated with decreased contractile protein expression. By contrast, both fibronectin and collagen I increased proliferation of cultured BTSM cells. Similar effects were observed for PDGF. Moreover, PDGF augmented fibronectin- and collagen I-induced proliferation in an additive fashion, without an additional effect on contractility or contractile protein expression. The fibronectin-induced depression of contractility was blocked by the integrin antagonist Arg-Gly-Asp-Ser (RGDS) but not by its negative control Gly-Arg-Ala-Asp-Ser-Pro (GRADSP). Laminin, by itself, did not affect contractility or proliferation but reduced the effects of PDGF on these parameters. Strong relationships were found between the ECM-induced changes in Emax in BTSM strips and their proliferative responses in BSTM cells and for Emax and contractile protein expression. Our results indicate that ECM proteins differentially regulate both phenotype and function of intact ASM.


2013 ◽  
Vol 304 (11) ◽  
pp. L790-L802 ◽  
Author(s):  
X. Tan ◽  
Y. A. Alrashdan ◽  
H. Alkhouri ◽  
B. G. G. Oliver ◽  
C. L. Armour ◽  
...  

In asthma, airway smooth muscle (ASM) chemokine (C-X-C motif) receptor 3 (CXCR3) ligand production may attract mast cells or T lymphocytes to the ASM, where they can modulate ASM functions. In ASM cells (ASMCs) from people with or without asthma, we aimed to investigate JAK-STAT1, JNK, and Ca2+ involvement in chemokine (C-X-C motif) ligand (CXCL)10 and CXCL11 production stimulated by interferon-γ, IL-1β, and TNF-α combined (cytomix). Confluent, growth-arrested ASMC were treated with inhibitors for pan-JAK (pyridone-6), JAK2 (AG-490), JNK (SP-600125), or the sarco(endo)plasmic reticulum Ca2+ATPase (SERCA) pump (thapsigargin), Ca2+ chelator (BAPTA-AM), or vehicle before and during cytomix stimulation for up to 24 h. Signaling protein activation as well as CXCL10/CXCL11 mRNA and protein production were examined using immunoblot analysis, real-time PCR, and ELISA, respectively. Cytomix-induced STAT1 activation was lower and CXCR3 ligand mRNA production was more sensitive to pyridone-6 and AG-490 in asthmatic than nonasthmatic ASMCs, but CXCL10/CXCL11 release was inhibited by the same proportion. Neither agent caused additional inhibition of release when used in combination with the JNK inhibitor SP-600125. Conversely, p65 NF-κB activation was higher in asthmatic than nonasthmatic ASMCs. BAPTA-AM abolished early CXCL10/CXCL11 mRNA production, whereas thapsigargin reduced it in asthmatic cells and inhibited CXCL10/CXCL11 release by both ASMC types. Despite these inhibitory effects, neither Ca2+ agent affected early activation of STAT1, JNK, or p65 NF-κB. In conclusion, intracellular Ca2+ regulated CXCL10/CXCL11 production but not early activation of the signaling molecules involved. In asthma, reduced ASM STAT1-JNK activation, increased NF-κB activation, and altered Ca2+ handling may contribute to rapid CXCR3 ligand production and enhanced inflammatory cell recruitment.


2015 ◽  
Vol 309 (6) ◽  
pp. L537-L542 ◽  
Author(s):  
Rodney D. Britt ◽  
Michael A. Thompson ◽  
Ine Kuipers ◽  
Alecia Stewart ◽  
Elizabeth R. Vogel ◽  
...  

Exposure to moderate hyperoxia in prematurity contributes to subsequent airway dysfunction and increases the risk of developing recurrent wheeze and asthma. The nitric oxide (NO)-soluble guanylate cyclase (sGC)-cyclic GMP (cGMP) axis modulates airway tone by regulating airway smooth muscle (ASM) intracellular Ca2+ ([Ca2+]i) and contractility. However, the effects of hyperoxia on this axis in the context of Ca2+/contractility are not known. In developing human ASM, we explored the effects of novel drugs that activate sGC independent of NO on alleviating hyperoxia (50% oxygen)-induced enhancement of Ca2+ responses to bronchoconstrictor agonists. Treatment with BAY 41–2272 (sGC stimulator) and BAY 60-2770 (sGC activator) increased cGMP levels during exposure to 50% O2. Although 50% O2 did not alter sGCα1 or sGCβ1 expression, BAY 60-2770 did increase sGCβ1 expression. BAY 41-2272 and BAY 60-2770 blunted Ca2+ responses to histamine in cells exposed to 50% O2. The effects of BAY 41-2272 and BAY 60-2770 were reversed by protein kinase G inhibition. These novel data demonstrate that BAY 41-2272 and BAY 60-2770 stimulate production of cGMP and blunt hyperoxia-induced increases in Ca2+ responses in developing ASM. Accordingly, sGC stimulators/activators may be a useful therapeutic strategy in improving bronchodilation in preterm infants.


Sign in / Sign up

Export Citation Format

Share Document