Protein kinase C activation allows pulmonary artery smooth muscle cells to proliferate to hypoxia

1991 ◽  
Vol 260 (2) ◽  
pp. L136-L145 ◽  
Author(s):  
E. C. Dempsey ◽  
I. F. McMurtry ◽  
R. F. O'Brien

Pulmonary artery (PA) smooth muscle cell (SMC) proliferation occurs with hypoxic pulmonary hypertension in vivo. However, proliferation of cultured PA SMC to hypoxia has not been demonstrated, and thus the mechanism by which these cells respond to hypoxia is unknown. Because protein kinase C (PKC) plays a role in intracellular transduction of proliferative signals, we asked whether PKC activation 1) causes proliferation of bovine PA SMC and 2) is important in PA SMC proliferative response to hypoxia. By measuring [3H]thymidine incorporation and cell counts, we found that quiescent PA SMC from four different cows proliferated with the PKC activator, phorbol 12-myristate 13-acetate (PMA), in a concentration-dependent manner. The proliferation was blocked with a PKC inhibitor, dihydrosphingosine, or by downregulating SMC PKC. We tested whether “priming“ PA SMC by PKC activation was required for in vitro SMC proliferative response to hypoxia. Each SMC population was treated with PMA and then exposed for 24 h to 20, 10, 7, 3 or 0% O2. These cells proliferated with hypoxia reaching a peak response at 3% O2. The magnitude of the response to PMA and hypoxia was different for each cell population tested. No hypoxic proliferation occurred in control cells (no PMA). Dihydrosphingosine blocked the hypoxic response to the same extent that it inhibited the initial PMA conditioning stimulus. PKC-downregulated PA SMC did not proliferate to PMA or to subsequent hypoxia. The hypoxic response was not due to a reduction in O2 radical-mediated antiproliferative effect; rather, the PMA-primed cells seemed to “acquire” the ability to directly sense hypoxia and proliferate. In summary, PKC activation caused proliferation of PA SMC in vitro and allowed an additional proliferative response to hypoxia. Activation of PKC may be a requisite step for PA SMC to respond directly to hypoxia.

1993 ◽  
Vol 70 (05) ◽  
pp. 800-806 ◽  
Author(s):  
C Ternisien ◽  
M Ramani ◽  
V Ollivier ◽  
F Khechai ◽  
T Vu ◽  
...  

SummaryTissue factor (TF) is a transmembrane receptor which, in association with factors VII and Vila, activates factor IX and X, thereby activating the coagulation protease cascades. In response to bacterial lipopolysaccharide (LPS) monocytes transcribe, synthesize and express TF on their surface. We investigated whether LPS-induced TF in human monocytes is mediated by protein kinase C (PKC) activation. The PKC agonists phorbol 12- myristate 13-acetate (PMA) and phorbol 12, 13 dibutyrate (PdBu) were both potent inducers of TF in human monocytes, whereas 4 alpha-12, 13 didecanoate (4 a-Pdd) had no such effect. Both LPS- and PMA-induced TF activity were inhibited, in a concentration dependent manner, by three different PKC inhibitors: H7, staurosporine and calphostin C. TF antigen determination confirmed that LPS-induced cell-surface TF protein levels decreased in parallel to TF functional activity under staurosporine treatment. Moreover, Northern blot analysis of total RNA from LPS- or PMA-stimulated monocytes showed a concentration-dependent decrease in TF mRNA levels in response to H7 and staurosporine. The decay rate of LPS-induced TF mRNA evaluated after the arrest of transcription by actinomycin D was not affected by the addition of staurosporine, suggesting that its inhibitory effect occurred at a transcriptional level. We conclude that LPS-induced production of TF and its mRNA by human monocytes are dependent on PKC activation.


2000 ◽  
Vol 345 (2) ◽  
pp. 297-306 ◽  
Author(s):  
Paulus C. J. VAN DER HOEVEN ◽  
José C. M. VAN DER WAL ◽  
Paula RUURS ◽  
Marc C. M. VAN DIJK ◽  
Wim J. VAN BLITTERSWIJK

14-3-3 Proteins may function as adapters or scaffold in signal-transduction pathways. We found previously that protein kinase C-ζ (PKC-ζ) can phosphorylate and activate Raf-1 in a signalling complex [van Dijk, Hilkmann and van Blitterswijk (1997) Biochem. J. 325, 303-307]. We report now that PKC-ζ-Raf-1 interaction is mediated by 14-3-3 proteins in vitro and in vivo. Co-immunoprecipitation experiments in COS cells revealed that complex formation between PKC-ζ and Raf-1 is mediated strongly by the 14-3-3β and -θ isotypes, but not by 14-3-3ζ. Far-Western blotting revealed that 14-3-3 binds PKC-ζ directly at its regulatory domain, where a S186A mutation in a putative 14-3-3-binding domain strongly reduced the binding and the complex formation with 14-3-3β and Raf-1. Treatment of PKC-ζ with lambda protein phosphatase also reduced its binding to 14-3-3β in vitro. Preincubation of an immobilized Raf-1 construct with 14-3-3β facilitated PKC-ζ binding. Together, the results suggest that 14-3-3 binds both PKC-ζ (at phospho-Ser-186) and Raf-1 in a ternary complex. Complex formation was much stronger with a kinase-inactive PKC-ζ mutant than with wild-type PKC-ζ, supporting the idea that kinase activity leads to complex dissociation. 14-3-3β and -θ were substrates for PKC-ζ, whereas 14-3-3ζ was not. Phosphorylation of 14-3-3β by PKC-ζ negatively regulated their physical association. 14-3-3β with its putative PKC-ζ phosphorylation sites mutated enhanced co-precipitation between PKC-ζ and Raf-1, suggesting that phosphorylation of 14-3-3 by PKC-ζ weakens the complex in vivo. We conclude that 14-3-3 facilitates coupling of PKC-ζ to Raf-1 in an isotype-specific and phosphorylation-dependent manner. We suggest that 14-3-3 is a transient mediator of Raf-1 phosphorylation and activation by PKC-ζ.


Hypertension ◽  
2008 ◽  
Vol 52 (3) ◽  
pp. 499-506 ◽  
Author(s):  
Jundong Jiao ◽  
Vivek Garg ◽  
Baofeng Yang ◽  
Terry S. Elton ◽  
Keli Hu

Vascular ATP-sensitive K + (K ATP ) channels are critical regulators of arterial tone and, thus, blood flow in response to local metabolic needs. They are important targets for clinically used drugs to treat hypertensive emergency and angina. It is known that protein kinase C (PKC) activation inhibits K ATP channels in vascular smooth muscles. However, the mechanism by which PKC inhibits the channel remains unknown. Here we report that caveolin-dependent internalization is involved in PKC-ε–mediated inhibition of vascular K ATP channels (Kir6.1 and SUR2B) by phorbol 12-myristate 13-acetate or angiotensin II in human embryonic kidney 293 cells and immortalized human saphenous vein vascular smooth muscle cells. We showed that Kir6.1 substantially overlapped with caveolin-1 at the cell surface. Cholesterol depletion with methyl-β-cyclodextrin significantly reduced, whereas overexpression of caveolin-1 largely enhanced, PKC-induced inhibition of Kir6.1/SUR2B currents. Importantly, we demonstrated that activation of PKC-ε caused internalization of K ATP channels, the effect that was blocked by depletion of cholesterol with methyl-β-cyclodextrin, expression of dominant-negative dynamin mutant K44E, or knockdown of caveolin-1 with small interfering RNA. Moreover, patch-clamp studies revealed that PKC-ε–mediated inhibition of the K ATP current induced by PMA or angiotensin II was reduced by a dynamin mutant, as well as small interfering RNA targeting caveolin-1. The reduction in the number of plasma membrane K ATP channels by PKC activation was further confirmed by cell surface biotinylation. These studies identify a novel mechanism by which the levels of vascular K ATP channels could be rapidly downregulated by internalization. This finding provides a novel mechanistic insight into how K ATP channels are regulated in vascular smooth muscle cells.


1999 ◽  
Vol 276 (6) ◽  
pp. L1010-L1017 ◽  
Author(s):  
Alexandra Guldemeester ◽  
Kurt R. Stenmark ◽  
George H. Brough ◽  
Troy Stevens

Neonatal pulmonary artery smooth muscle cells (PASMCs) exhibit enhanced growth capacity and increased growth responses to mitogenic stimuli compared with adult PASMCs. Because intracellular signals mediating enhanced growth responses in neonatal PASMCs are incompletely understood, we questioned whether 1) Gq agonists increase cAMP content and 2) increased cAMP is proproliferative. Endothelin-1 and angiotensin II increased both cAMP content and proliferation in neonatal but not in adult PASMCs. Inhibition of protein kinase C and protein kinase A activity nearly eliminated the endothelin-1- and angiotensin II-induced growth of neonatal PASMCs. Moreover, cAMP increased proliferation in neonatal but not in adult cells. Protein kinase C-stimulated adenylyl cyclase was expressed in both cell types, suggesting that insensitivity to stimulation of cAMP in adult cells was not due to decreased enzyme expression. Our data collectively indicate that protein kinase C stimulation of cAMP is a critical signal mediating proliferation of neonatal PASMCs that is absent in adult PASMCs and therefore may contribute to the unique proproliferative phenotype of these neonatal cells.


Zygote ◽  
1996 ◽  
Vol 4 (04) ◽  
pp. 257-262 ◽  
Author(s):  
L. Zelarayán ◽  
J. Oterino ◽  
M.I. Bühler

SummaryAlthough progesterone is the maturation inducer in amphibians, it has been demonstrated that inBufo arenarumoocytes resumed meiosis with no need of exogenous hormonal stimulus if derived of their enveloping, follicle cells. This phenomenon, called spontaneous maturation, is quite rare in amphibians. InB. arenarum, spontaneous maturation took place only in oocytes obtained during the reproductive period (spring-summer). During this period the oocytes also demonstrated a respiratory activity characteristic of mature oocytes. Interestingly, full-grownB. arenarumoocytes always responded to progesterone regardless of the season in which they were obtained and of their respiratory activity. The disposition of oocytes competent or not competent to mature spontaneously provides a useful system for the study of molecular mechanisms involved in the maturation process. The data presented here indicate that the activation of protein kinase C (PKC) induces germinal vesicle breakdown (GVBD) in denuded oocytes unable to mature spontaneously (winter oocytes) and is involved in the in vitro spontaneous maturation ofB. arenarumfull-grown oocytes. The inhibition of PKC by 1-(5-isoquinolynyl-sulphonyl-2-methyl-piperazine (H-7) impeded spontaneous maturation in a dose-dependent manner, thus supporting the participation of the PKC pathway during this process. Interestingly phorbol 12-myristate-13-acetate (PMA)-induced GVBD is inhibited by the incubation of the oocytes in dibutyryl cAMP (dbcAMP), indicating that both pathways, PKC and protein kinase A (PKA), are related at a certain point. However, spontaneous GVBD is less sensitive than PMA-induced GVBD to dbcAMP. This fact would support the suggestion that in spontaneous GVBD mechanisms different from activation of PKC are at work.


Sign in / Sign up

Export Citation Format

Share Document