Time course of airway hyperresponsiveness and remodeling induced by hyperoxia in rats

1995 ◽  
Vol 269 (2) ◽  
pp. L227-L233 ◽  
Author(s):  
J. L. Szarek ◽  
H. L. Ramsay ◽  
A. Andringa ◽  
M. L. Miller

The purpose of this study was to answer two questions concerning hyperoxia-induced airway hyperresponsiveness: 1) What is the time course of the development of airway hyperresponsiveness? 2) What is the relationship between the increase in responsiveness and smooth muscle area? Segments of intrapulmonary bronchi were isolated from male Sprague-Dawley rats that had been exposed to 80-85% O2 for a period of 1, 3, 5, or 7 days and from aged-matched control animals that breathed room air. Hyperoxia increased the sensitivity (log concentration or frequency that elicited a half-maximal response) and reactivity (maximum tension developed) of the airways to electrical field stimulation (EFS) after 3, 5, and 7 days; sensitivity to acetylcholine was not affected, but reactivity was increased after 7 days. Hyperoxia increased smooth muscle area beginning 5 days after commencing the exposure. After normalizing tension responses to smooth muscle area, reactivity of the airways to the stimuli was not different between the two groups, but sensitivity to EFS was still increased. The increase in reactivity observed after 5 and 7 days of exposure can be explained by an increase in smooth muscle area that occurred at these time points. The fact that the sensitivity of the airways to EFS remained increased after normalization, together with the fact that the increase in airway responsiveness after 3 days of exposure occurred at a time when smooth muscle area was not different from control, suggests that mechanisms other than increased smooth muscle area contribute to the development of hyperoxia-induced airway hyperresponsiveness.

2002 ◽  
Vol 92 (5) ◽  
pp. 1835-1842 ◽  
Author(s):  
Pasquale Chitano ◽  
Carrie M. Cox ◽  
Thomas M. Murphy

Our laboratory has previously shown that maturation of airway smooth muscle (ASM) contractility may play a role in the airway hyperresponsiveness displayed by juveniles of many species, including humans (Chitano P, Wang J, Cox CM, Stephens NL, and Murphy TM. J Appl Physiol 88: 1338–1345, 2000). ASM relaxation, which could also contribute to airway hyperresponsiveness, has neither been described nor quantified during maturation. Therefore, we studied ASM relaxation during and after electrical field stimulation (EFS) in tracheal strips from 1-wk-old, 3-wk-old, and 3-mo-old guinea pigs. Strips were stimulated (60 Hz, 18 V) at their optimal length for 15, 20, and 25 s, with and without the cyclooxygenase inhibitor indomethacin. To evaluate the role of the epithelium, deepithelialized strips from adult animals were also studied. New indexes were developed to quantify relaxation during EFS. We measured the time course of tension relaxation and its maximum rate (RTR) during the EFS, as well as the residual tension at the end of the EFS (TCTend). After EFS, we measured the maximum RTR and the time needed to reduce to half the TCTend. Relaxation during the EFS significantly increased with age. Indomethacin reduced this age difference by increasing relaxation in strips from younger animals. By contrast, removal of the epithelium in adult strips decreased relaxation. Relaxation after EFS decreased with age and was not affected by indomethacin. In adult strips, it was further reduced by epithelium removal. Our results show that during EFS 1) airway smooth muscle relaxation increases with age, 2) cyclooxygenase metabolites oppose relaxation in younger animals, and 3) epithelium removal inhibits relaxation. We suggest that a reduced ASM relaxing ability during stimulation may be involved in juvenile airway hyperresponsiveness.


1989 ◽  
Vol 256 (2) ◽  
pp. C282-C287 ◽  
Author(s):  
C. M. Hai ◽  
R. A. Murphy

We tested the hypothesis that relaxation in vascular smooth muscle is the result of inactivation of myosin light chain kinase and cross-bridge dephosphorylation. Fast neurally mediated contractions of swine carotid medial strips were induced by electrical field stimulation. Termination of the stimulus resulted in relaxation with a half time of 2 min. Nifedipine (0.1 microM) increased the relaxation rate without significant effects on the contractile response. Cross-bridge dephosphorylation was much faster than stress decay with basal levels reached within 1 min when 73% of the developed stress remained. The time-course data of dephosphorylation and stress were analyzed with a model that predicted the dependences of stress and isotonic shortening velocity on cross-bridge phosphorylation during contraction. Rate constants resolved from contraction data also fitted the relaxation data when the model's prediction was corrected for estimated errors in the phosphorylation measurements. Because Ca2+-dependent cross-bridge phosphorylation was the only postulated regulatory mechanism in the model, these results are consistent with the hypothesis that cross-bridge dephosphorylation is necessary and sufficient to explain relaxation in the swine carotid media.


1988 ◽  
Vol 65 (1) ◽  
pp. 57-64 ◽  
Author(s):  
G. L. Jones ◽  
P. M. O'Byrne ◽  
M. Pashley ◽  
R. Serio ◽  
J. Jury ◽  
...  

Airway hyperresponsiveness occurs after inhalation of O3 in dogs. The purpose of this study was to examine the responsiveness of trachealis smooth muscle in vitro to electrical field stimulation, exogenous acetylcholine, and potassium chloride from dogs with airway hyperresponsiveness after inhaled O3 in vivo and to compare this with the responsiveness of trachealis muscle from control dogs. In addition, excitatory junction potentials were measured with the use of single and double sucrose gap techniques in both groups of dogs to determine whether inhaled O3 affects the release of acetylcholine from parasympathetic nerves in trachealis muscle. Airway hyperresponsiveness developed in all dogs after inhaled O3 (3 ppm for 30 min). The acetylcholine provocative concentration decreased from 4.11 mg/ml before O3 inhalation to 0.66 mg/ml after O3 (P less than 0.0001). The acetylcholine provocative concentration increased slightly after control inhalation of dry room air. Airway smooth muscle showed increased responses to both electrical field stimulation and exogenous acetylcholine but not to potassium chloride in preparations from dogs with airway hyperresponsiveness in vivo. The increased response to electrical field stimulation was not associated with a change in excitatory junctional potentials. These results suggest that a postjunctional alteration in trachealis muscle function occurs after inhaled O3 in dogs, which may account for airway hyperresponsiveness after O3 in vivo.


1994 ◽  
Vol 77 (4) ◽  
pp. 1638-1643 ◽  
Author(s):  
A. Opazo-Saez ◽  
P. D. Pare

Nonspecific bronchial hyperresponsiveness in asthma is characterized by increased maximal airway narrowing (reactivity) and increased sensitivity of the airways. A decreased load on airway smooth muscle (ASM) has been suggested as a mechanism of increased reactivity. We hypothesized that decreased ASM load can also cause a leftward shift in the dose-response curve and explain increased sensitivity. We tested this hypothesis using rabbit tracheal smooth muscle strips in vitro by measuring isotonic shortening and isometric force during electrical field stimulation (1–100 Hz) at the length at which maximal active tension developed (Lmax), 90% Lmax, and 110% Lmax The frequency-response relationships expressed as frequency vs. percent maximal shortening or tension were not different at Lmax or 110% Lmax, but at 90% Lmax the frequency vs. shortening relationship was significantly shifted leftward relative to the frequency vs. tension relationship (P < 0.05). The electrical field stimulation frequencies that produced 50% maximal response for isometric tension and for isotonic shortening, respectively, were 6.7 +/- 1.9 and 3.9 +/- 0.7 Hz at 90% Lmax, 9.2 +/- 2.1 and 7.5 +/- 1.9 Hz at 100% Lmax, and 2.8 +/- 1.0 and 1.2 +/- 0.5 Hz at 110% Lmax. We conclude that, at lengths below Lmax, isotonic shortening is facilitated compared with isometric tension and therefore decreased ASM load in vivo may result in increased sensitivity.


2001 ◽  
Vol 91 (1) ◽  
pp. 371-378 ◽  
Author(s):  
Zhong-Xin Wu ◽  
David F. Maize ◽  
Brian E. Satterfield ◽  
David G. Frazer ◽  
Jeff S. Fedan ◽  
...  

Exposure to ozone (O3) enhances airway responsiveness, which is mediated partly by the release of substance P (SP) from airway neurons. In this study, the role of intrinsic airway neurons in O3-induced airway responses was examined. Ferrets were exposed to 2 ppm O3 or air for 1 h. Reactivity of isolated tracheal smooth muscle to cholinergic agonists was significantly increased after O3 exposure, as were contractions to electrical field stimulation at 10 Hz. Pretreatment with CP-99994, a neurokinin type 1 receptor antagonist, partially abolished the O3-induced reactivity to cholinergic agonists and electrical field stimulation. The O3-enhanced airway responses were present in tracheal segments cultured for 24 h, a procedure shown to deplete sensory nerves while maintaining viability of intrinsic airway neurons, and all the enhanced smooth muscle responses were also diminished by CP-99994. Immunocytochemistry showed that the percentage of SP-containing neurons in longitudinal trunk and the percentage of neurons innervated by SP-positive nerve fibers in superficial muscular plexus were significantly increased at 1 h after exposure to O3. These results suggest that enhanced SP levels in airway ganglia contribute to O3-induced airway hyperresponsiveness.


1990 ◽  
Vol 259 (2) ◽  
pp. L130-L135 ◽  
Author(s):  
R. W. Mitchell ◽  
T. M. Murphy ◽  
E. Kelly ◽  
A. R. Leff

We examined postganglionic development of acetylcholinesterase (AChase) activity and tracheal smooth muscle (TSM) contraction elicited by cholinomimetic activation and electrical field depolarization in vitro. Epithelium-intact tracheal strips excised from 21 2-wk-old swine (2ws) and 19 10-wk-old swine (10ws) were tethered isometrically at optimal resting length, and responses were expressed as percent of the maximum to 63 mM potassium-chloride (%KCl). Cumulative concentration-response curves to KCl were equivalent for TSM from 2 and 10ws. However, maximal contraction to ACh in 2ws (168 +/- 8.4 %KCl) was greater than for 10ws (142 +/- 2.3 %KCl; P less than 0.02). Stimulus-response curves (field electrodes; AC source) demonstrated greater sensitivity for TSM in 10ws (stimulus causing 50% of the maximal response = 3.32 +/- 0.13 V in 2ws vs. 2.25 +/- 0.12 V in 10ws; P less than 0.001), indicating that the greater cholinomimetic responsiveness of 2ws did not result from augmented presynaptic nerve conduction. The AChase inhibitor, physostigmine, caused 1) greater sensitivity of responses elicited by electrical field stimulation in 2ws (P less than 0.05) but not in 10ws (P = NS), 2) augmentation of maximal responses to exogenous ACh in 10ws (27% increase; P less than 0.01) but not 2ws (2% increase; P = NS), and 3) a greater increase in sensitivity to cholinomimetic activation in 2ws compared with 10ws (P less than 0.02). These data demonstrate increased cholinergic contraction of TSM in 2 vs. 10ws that results at least in part from reduced AChase activity in the trachea of immature animals.


1994 ◽  
Vol 72 (3) ◽  
pp. 199-204
Author(s):  
Tony R. Bai ◽  
F. W. F. Prasad

The aim of this study was to test the hypothesis that the increase in maximal responses to histamine, acetylcholine, and cholinergic electrical field stimulation and decreased relaxant responses to isoprenaline reported in asthmatic tracheal smooth muscle result from the epithelial damage observed in asthma. The effect of mechanical removal of the epithelium on contractile and relaxant responses was examined in normal human postmortem tracheal smooth muscle strips. The epithelium was removed from alternate tracheal strips obtained from 25 subjects within 14 h of sudden death from nonrespiratory causes. In paired samples, contractile cholinergic and inhibitory nonadrenergic, noncholinergic (i-NANC) neural responses to electrical field stimulation and responses to exogenous histamine, potassium chloride, theophylline, and isoprenaline were unaffected by removal of the epithelium. However, the maximal isometric tension (Tmax) induced by methacholine increased by 70.1 ± 19.8% (mean ± SE, p < 0.005, n = 9), without alteration in EC50. These data suggest that disruption of the epithelium is unlikely to be the explanation of the abnormalities observed in trachea in fatal asthma. Explanations of the increase in maximal response to methacholine following removal of the epithelium include loss of an epithelium-derived relaxant factor released via an epithelial muscarinic receptor or loss of a specific permeability or metabolic barrier imposed by the epithelium for methacholine.Key words: asthma, epithelium-derived relaxant factor, airway responsiveness, airway innervation.


Metabolism ◽  
2005 ◽  
Vol 54 (5) ◽  
pp. 645-652 ◽  
Author(s):  
Subramanyam N. Murthy ◽  
Demian F. Obregon ◽  
Natasha N. Chattergoon ◽  
Neil A. Fonseca ◽  
Debasis Mondal ◽  
...  

2001 ◽  
Vol 90 (2) ◽  
pp. 734-740 ◽  
Author(s):  
Lu Wang ◽  
Peter D. Paré ◽  
Chun Y. Seow

The ability of rabbit trachealis to undergo plastic adaptation to chronic shortening or lengthening was assessed by setting the muscle preparations at three lengths for 24 h in relaxed state: a reference length in which applied force was ∼1–2% of maximal active force (Po) and lengths considerably shorter and longer than the reference. Passive and active length-tension ( L-T) curves for the preparations were then obtained by electrical field stimulation at progressively increasing muscle length. Classically shaped L-T curves were obtained with a distinct optimal length ( L o) at which Podeveloped; however, both the active and passive L-T curves were shifted, whereas Po remained unchanged. L o was 72% and 148% that of the reference preparations for the passively shortened and lengthened muscles, respectively. The results suggest that chronic narrowing of the airways could induce a shift in the L-T relationship of smooth muscle, resulting in a maintained potential for maximal force production.


2004 ◽  
Vol 287 (3) ◽  
pp. C594-C602 ◽  
Author(s):  
Christopher M. Rembold ◽  
Robert L. Wardle ◽  
Christopher J. Wingard ◽  
Timothy W. Batts ◽  
Elaine F. Etter ◽  
...  

Serine 19 phosphorylation of the myosin regulatory light chain (MRLC) appears to be the primary determinant of smooth muscle force development. The relationship between MRLC phosphorylation and force is nonlinear, showing that phosphorylation is not a simple switch regulating the number of cycling cross bridges. We reexamined the MRLC phosphorylation-force relationship in slow, tonic swine carotid media; fast, phasic rabbit urinary bladder detrusor; and very fast, tonic rat anococcygeus. We found a sigmoidal dependence of force on MRLC phosphorylation in all three tissues with a threshold for force development of ∼0.15 mol Pi/mol MRLC. This behavior suggests that force is regulated in a highly cooperative manner. We then determined whether a model that employs both the latch-bridge hypothesis and cooperative activation could reproduce the relationship between Ser19-MRLC phosphorylation and force without the need for a second regulatory system. We based this model on skeletal muscle in which attached cross bridges cooperatively activate thin filaments to facilitate cross-bridge attachment. We found that such a model describes both the steady-state and time-course relationship between Ser19-MRLC phosphorylation and force. The model required both cooperative activation and latch-bridge formation to predict force. The best fit of the model occurred when binding of a cross bridge cooperatively activated seven myosin binding sites on the thin filament. This result suggests cooperative mechanisms analogous to skeletal muscle that will require testing.


Sign in / Sign up

Export Citation Format

Share Document