scholarly journals Enhancement of tumoricidal activity of alveolar macrophages via CD40-CD40 ligand interaction

1999 ◽  
Vol 277 (1) ◽  
pp. L49-L57 ◽  
Author(s):  
Kazuyoshi Imaizumi ◽  
Tsutomu Kawabe ◽  
Satoshi Ichiyama ◽  
Hitoshi Kikutani ◽  
Hideo Yagita ◽  
...  

CD40-CD40 ligand (CD40L) interaction was originally defined as important molecules for the development of humoral immunity. Thereafter, some investigations have focused on its essential roles for the induction of cell-mediated immunity in host defenses. Here we investigated the antitumor activity of murine alveolar macrophages through CD40-CD40L interaction. The CD40L gene was transfected into murine lung cancer cells (3LLSA), and CD40L-expressing clones (3LLSA-CD40L) were established. Stimulation of CD40 molecules on the surface of alveolar macrophages with 3LLSA-CD40L cells induced the production of nitric oxide, tumor necrosis factor-α, and interleukin-12 and the tumoricidal activity of alveolar macrophages in the presence of interferon-γ, which increased the surface expression of CD40 molecules on alveolar macrophages. These findings were not observed when alveolar macrophages were obtained from CD40-deficient mice. On the other hand, interleukin-6 production by alveolar macrophages did not depend on CD40-CD40L interaction. We also established a murine melanoma cell line expressing CD40L (B16 4A5-CD40L) that could induce tumoricidal activity of alveolar macrophages. Furthermore, when spleen cells were cocultivated with 3LLSA-CD40L cells, specific cytotoxic T lymphocytes for wild-type 3LLSA cells could be induced. These results suggest that CD40L gene transfer into tumor cells may induce antitumor immunity in a tumor-bearing host and may offer a new strategy for cancer gene therapy.

Blood ◽  
2003 ◽  
Vol 102 (12) ◽  
pp. 4099-4106 ◽  
Author(s):  
Stefania Fontana ◽  
Daniele Moratto ◽  
Surinder Mangal ◽  
Maria De Francesco ◽  
William Vermi ◽  
...  

Abstract We have recently identified 2 patients with a rare autosomal recessive form of hyper IgM disease, known as HIGM3, caused by mutations in the CD40 gene. These patients had opportunistic infections observed on X-linked hyper IgM syndrome (HIGM), suggesting that the CD40-CD40 ligand interaction is important for promoting T-cell-mediated immunity. To evaluate whether innate immunity signals may substitute CD154 for inducing the maturation of dendritic cells (DCs), we analyzed monocyte-derived DCs in these patients. Monocyte-derived DCs of HIGM3 subjects on ex vivo stimulation with tumor necrosis factor-α (TNF-α) or lipopolysaccharide (LPS) combined with interferon-γ (IFN-γ) normally express all the markers of mature DCs, such as CD83 and DC-LAMP. However, cell surface levels of HLA-DR in mature DCs are reduced, as is costimulatory activity of these cells for allogeneic naive T cells. In addition, CD40-deficient DCs secrete lower amounts of interleukin-12 (IL-12) but larger quantities of IL-10 than control subjects. Finally, analysis of circulating plasmacytoid DCs demonstrates a normal percentage of this subset in CD40-deficient cells, but IFN-α secretion in response to herpes simplex virus 1 (HSV-1) infection is severely reduced in patients. These observations suggest that the severe impairment of DC maturation may contribute to the defect of T-cell-mediated immunity observed in HIGM3 patients. (Blood. 2003;102:


2008 ◽  
Vol 61 (9) ◽  
pp. 1006-1012 ◽  
Author(s):  
S Y Patel ◽  
R Doffinger ◽  
G Barcenas-Morales ◽  
D S Kumararatne

Individuals with impaired cell mediated immunity exhibit increased susceptibility to infections caused by poorly pathogenic mycobacteria (non-tuberculous mycobacteria and BCG), as well as salmonella species. However, these infections may also occur in a disseminated, fatal form, sometimes with a familial distribution, in the absence of any recognised primary or secondary immunodeficiency. Genetic analysis of affected families has defined mutations in seven different genes participating in the interleukin 12 (IL12) dependent, high output interferon γ (IFNγ) pathway. The first category of defect is mutations in the IFNγR1 or R2 genes, resulting in defective expression or function of the IFNγ receptor. The second category of mutations abrogates the cell surface expression IL12Rβ1gene, resulting in the inability to respond to IL12. The third category of defect is the inability to produce IL12, due to deletion within the gene coding for the inducible chain of IL12 (IL12-p40). Patients with X-linked recessive mutations of the gene encoding the NFκB essential modulator may also develop mycobacterial infections, although they usually have a more complex phenotype and are susceptible to a broad spectrum of pathogens. Mutations of the gene encoding the signal transducing molecule STAT1, which impairs the ability to respond to IFNγ, and mutations of the gene encoding TYK2 (which is associated with a failure to respond to IL12), are both rare genetic defects predisposing to mycobacterial infections. This review summarises the clinical spectrum seen in this group of patients and indicates a strategy for the identification of putative genetic defects in the type-1 cytokine pathway.


2001 ◽  
Vol 10 (6) ◽  
pp. 309-313 ◽  
Author(s):  
Masahiro Sasaki ◽  
Yuriko Namioka ◽  
Takefumi Ito ◽  
Noriko Izumiyama ◽  
Shin Fukui ◽  
...  

Intracellular adhesion molecule-1 (ICAM-1)-mediated cell-cell adhesion is thought to play an important role at sites of inflammation. Recent evidence suggests that ICAM-1 surface expression on alveolar macrophages is increased in pulmonary sarcoidosis and that inflammatory granuloma formation is characterized by the aggregation of macrophages. The present study shows that ICAM-1 expression is significantly elevated on alveolar macrophages from patients with sarcoidosis in response to tumor necrosis factor-α (TNF-α) and interferon- γ (INF-γ) compared with healthy controls. Aggregation and adhesion were significantly increased in alveolar macrophages treated with TNF-α and INF-γ, and significantly inhibited in those pretreated with a monoclonal antibody to ICAM-1. Similarly, aggregation and adhesion were inhibited in macrophages treated with heparin, which then exhibited a wide range of biological activities relevant to inflammation. These results suggested that the surface expression of ICAM-1 on alveolar macrophages in response to TNF-α and INF-γ is important in mediating aggregation and adhesion. Additionally, heparin may be useful for developing novel therapeutic agents for fibrotic lung disease.


Blood ◽  
2005 ◽  
Vol 106 (3) ◽  
pp. 946-955 ◽  
Author(s):  
Andreas C. Renkl ◽  
Julia Wussler ◽  
Thomas Ahrens ◽  
Käthe Thoma ◽  
Shigeyuki Kon ◽  
...  

AbstractOsteopontin (OPN) has been shown to have T helper 1 (Th1) cytokine functions in cell-mediated immunity. Deficiency of OPN is linked to a reduced Th1 immune response in autoimmunity, infectious disease, and delayed-type allergy. Dendritic cells (DCs) are central for the induction of T-cell–mediated immunity, when initially flexible DCs are instructed by priming signals and tissue-derived factors to adopt Th1, Th2, or regulatory T-cell–inducing phenotypes. Although OPN influences the cytokine secretion of T cells and macrophages, its effects on DC polarization remain an important missing link in the understanding of OPN functions in Th1 immunity. Here we demonstrate that OPN promotes the emigration of human DCs from the epidermis and functionally activates myeloid-type DCs, augmenting their expression of HLA-DR, costimulatory, and adhesion molecules. OPN induces their Th1-promoting tumor necrosis factor α (TNF-α) and interleukin-12 (IL-12) secretion, and enhances their allostimulatory capacity. In mixed lymphocyte reactions (MLRs), OPN stimulates IL-12 secretion by DCs, inducing elevated interferon-γ (IFN-γ) production by T cells. Naive Th cells stimulated by OPN-activated DCs show a Th1-polarized cytokine production. Our findings identify OPN as an important tissue-derived factor that DCs encounter when traveling from peripheral sites of activation to secondary lymphatic organs, which induces DC maturation toward a Th1-promoting phenotype.


2004 ◽  
Vol 32 (4) ◽  
pp. 629-632 ◽  
Author(s):  
T. Lehner ◽  
Y. Wang ◽  
T. Whittall ◽  
E. McGowan ◽  
C.G. Kelly ◽  
...  

Microbial HSP70 (heat-shock protein 70) consists of three functionally distinct domains: an N-terminal 44 kDa ATPase portion (amino acids 1–358), followed by an 18 kDa peptide-binding domain (amino acids 359–494) and a C-terminal 10 kDa fragment (amino acids 495–609). Immunological functions of these three different domains in stimulating monocytes and dendritic cells have not been fully defined. However, the C-terminal portion (amino acids 359–610) stimulates the production of CC chemokines, IL-12 (interleukin-12), TNFα(tumour necrosis factor α), NO and maturation of dendritic cells and also functions as an adjuvant in the induction of immune responses. In contrast, the ATPase domain of microbial HSP70 mostly lacks these functions. Since the receptor for HSP70 is CD40, which with its CD40 ligand constitutes a major co-stimulatory pathway in the interaction between antigen-presenting cells and T-cells, HSP70 may function as an alternative ligand to CD40L. HSP70–CD40 interaction has been demonstrated in non-human primates to play a role in HIV infection, in protection against Mycobacterium tuberculosis and in conversion of tolerance to immunity.


Blood ◽  
2002 ◽  
Vol 99 (9) ◽  
pp. 3427-3431 ◽  
Author(s):  
Daniela Bosisio ◽  
Nadia Polentarutti ◽  
Marina Sironi ◽  
Sergio Bernasconi ◽  
Kensuke Miyake ◽  
...  

Abstract In human monocytes and macrophages, interferon-γ (IFNγ) augmented mRNA and surface expression of toll-like receptor 4 (TLR4), a crucial component of the signaling receptor complex for bacterial lipopolysaccharide (LPS). Expression of the accessory component MD-2 and of the adapter protein MyD88 was also increased. LPS increased TLR4 mRNA levels, but concomitantly decreased its surface expression. IFNγ counteracted the LPS-induced downregulation of TLR4. IFNγ-primed monocytes showed increased responsiveness to LPS in terms of phosphorylation of the interleukin-1 receptor–associated kinase (IRAK; immediately downstream of the MyD88 adapter protein), NF-kB DNA binding activity, and, accordingly, of cytokine (tumor necrosis factor α [TNFα] and interleukin-12 [IL-12]) production. These results suggest that enhanced TLR4 expression underlies the long-known priming by IFNγ of mononuclear phagocytes for pathogen recognition and killing as well as its synergism with LPS in macrophage activation.


1998 ◽  
Vol 178 (4) ◽  
pp. 1095-1104 ◽  
Author(s):  
Steven M. Holland ◽  
Susan E. Dorman ◽  
Annette Kwon ◽  
Ian F. Pitha‐Rowe ◽  
David M. Frucht ◽  
...  

2002 ◽  
Vol 70 (8) ◽  
pp. 3994-4001 ◽  
Author(s):  
Mary Ann McDowell ◽  
Mary Marovich ◽  
Rosalia Lira ◽  
Michael Braun ◽  
David Sacks

ABSTRACT A major question in the study of leishmaniasis is what dictates clinical disease expression produced by different Leishmania species, i.e., cutaneous versus systemic and healing versus nonhealing. Animal models using a Leishmania species associated with self-limiting cutaneous disease (L. major) have revealed that protective immunity requires CD40/CD40 ligand (CD40L)-dependent, interleukin-12 (IL-12)-driven Th1 responses. We recently showed that L. major can prime human dendritic cells (DCs) for CD40L-triggered IL-12p70 secretion and that these cells can drive a Th1 response in autologous T cells from sensitized individuals. Here we show that in contrast to L. major, Leishmania species responsible for visceral disease (L. donovani), as well as species associated with persistent, cutaneous lesions and occasional systemic disease (L. tropica), did not induce CD40L-dependent IL-12p70 production, despite comparable levels of uptake by DCs. Up-regulated surface expression of CD40 did not correlate with IL-12p70 production, and appreciable CD40L-induced IL-12p40 secretion was observed in uninfected as well as infected DCs, regardless of species. Reverse transcription-PCR analysis confirmed that the production of heterodimeric IL-12 was limited by expression of IL-12p35 mRNA, which was dependent on both a microbial priming signal and CD40 engagement for its high-level induction. The intrinsic differences in the ability of Leishmania species to prime DCs for CD40L-dependent IL-12p70 secretion may account, at least in part, for the evolution of healing and nonhealing forms of leishmanial disease.


1997 ◽  
Vol 185 (7) ◽  
pp. 1231-1240 ◽  
Author(s):  
Alice P. Taylor ◽  
Henry W. Murray

Despite permitting uncontrolled intracellular visceral infection for 8 wk, interferon-γ (IFN-γ) gene knockout (GKO) mice infected with Leishmania donovani proceeded to reduce liver parasite burdens by 50% by week 12. This late-developing IFN-γ–independent antileishmanial mechanism appeared to be dependent largely on endogenous tumor necrosis factor-α (TNF-α): L. donovani infection induced TNF-α mRNA expression in parasitized GKO livers and neutralization of TNF-α reversed control at week 12. 7 d of treatment of infected GKO mice with interleukin-12 (IL-12) readily induced leishmanicidal activity and also partially restored the near-absent tissue granulomatous response, observations that for the first time expand the antimicrobial repertoire of IL-12 to include IFN-γ–independent effects. The action of IL-12 against L. donovani was TNF-α dependent and required the activity of inducible nitric oxide synthase. These results point to the presence of an IFN-γ–independent antimicrobial mechanism, mediated by TNF-α, which remains quiescent until activated late in the course of experimental visceral leishmaniasis. However, as judged by the effect of exogenous IL-12 this quiescent mechanism can readily be induced to rapidly yield enhanced intracellular antimicrobial activity.


Blood ◽  
2003 ◽  
Vol 102 (8) ◽  
pp. 2877-2884 ◽  
Author(s):  
Alison Smith ◽  
Fabio Santoro ◽  
Giulia Di Lullo ◽  
Lorenzo Dagna ◽  
Alessia Verani ◽  
...  

Abstract Human herpesvirus 6 (HHV-6) is a potentially immunosuppressive agent that has been suggested to act as a cofactor in the progression of HIV disease. Exposure of human macrophages to HHV-6A or HHV-6B profoundly impaired their ability to produce interleukin 12 (IL-12) upon stimulation with interferon-γ (IFN-γ) and lipopolysaccharide (LPS). By contrast, the production of tumor necrosis factor–α (TNF-α); regulated on activation, normal T-cell expressed and secreted (RANTES); and macrophage inflammatory protein 1β (MIP-1β) was not negatively affected. To exclude the involvement of IL-12–suppressive cytokines, such as IL-10 and TNF-α, the viral stocks were fractionated by ultra-centrifugation. The bulk of the suppressive activity was recovered within the virion-rich pelleted fraction that was virtually devoid of such cytokines. IL-12 suppression was independent of viral replication, and the effect was not abrogated upon ultraviolet-light inactivation of the viral inoculum. The mechanism of HHV-6–mediated IL-12 suppression was investigated by RNase protection assays, which demonstrated unaltered levels of IL-12 p35 mRNA and only a modest reduction in p40 mRNA, which was insufficient to account for the near-complete loss of both extracellular and intracellular IL-12 protein. Moreover, both the IFN-γ and the LPS signaling pathways were intact in HHV-6–treated cells. These data suggest that HHV-6 can dramatically affect the generation of effective cellular immune responses, providing a novel potential mechanism of HHV-6–mediated immunosuppression.


Sign in / Sign up

Export Citation Format

Share Document