Keratinocyte growth factor stimulates bronchial epithelial cell proliferation in vitro and in vivo

1999 ◽  
Vol 277 (4) ◽  
pp. L737-L742 ◽  
Author(s):  
Peter H. Michelson ◽  
Margaret Tigue ◽  
Ralph J. Panos ◽  
Peter H. S. Sporn

Airway epithelial cell (AEC) proliferation is crucial to the maintenance of an intact airway surface and the preservation of host defenses. The factors that regulate AEC proliferation are not known. Keratinocyte growth factor (KGF), also known as FGF-7, is a member of the fibroblast growth factor family and a known epithelial cell mitogen. We studied the influence of KGF on the growth of cultured human bronchial epithelial cells and on bronchial cells of rats treated with KGF in vivo. First, we demonstrated the mRNA for the KGF receptor (KGFR) in both normal human bronchial epithelial (NHBE) cells and BEAS-2B cells (a human bronchial epithelial cell line). KGF caused a dose-dependent increase in DNA synthesis, as assessed by thymidine incorporation, in both cell types, with a maximal twofold increase in NHBE cells after 50 ng/ml KGF ( P < 0.001). KGF also induced a doubling in NHBE cell number at 10 ng/ml ( P < 0.001). Finally, we determined the effect of intratracheal administration of KGF to rats on proliferation of AEC in vivo. Measuring bromodeoxyuridine (BrdU) incorporation in AEC nuclei, KGF increased BrdU labeling of rat AEC in both large and small airways by approximately threefold compared with PBS-treated controls ( P < 0.001). Thus KGF induces proliferation of bronchial epithelial cells both in vitro and in vivo.

1995 ◽  
Vol 268 (2) ◽  
pp. L230-L238 ◽  
Author(s):  
D. J. Romberger ◽  
P. Pladsen ◽  
L. Claassen ◽  
M. Yoshida ◽  
J. D. Beckmann ◽  
...  

Fibronectin (Fn) is involved in the migration of epithelial cells in re-epithelialization of wounds. Epithelial cell-derived Fn is particularly potent as a chemotactic factor for bronchial epithelial cells (BECs) in vitro. Thus modulation of airway epithelial cell Fn may be a key aspect of airway repair. Insulin is both an important growth factor and known chemotactic factor for cultured BECs. We postulated that insulin may modulate Fn production of cultured BECs. We examined this hypothesis utilizing bovine BECs in culture with serum-free media with and without insulin. BECs grown in media without insulin released more Fn into culture supernatants and contained more Fn in cell layers than cells grown with insulin. Labeling of cells with [35S]methionine demonstrated an increase in new protein production and Fn mRNA expression was increased. Increased Fn in BEC cultures without insulin was associated with an increase in active transforming growth factor-beta (TGF-beta) release as measured by a standard bioassay. Increased BEC Fn in cultures without insulin was partially inhibited by exposure of cultures to TGF-beta antibody. Thus insulin appears to modulate BEC Fn production in vitro in part through a TGF-beta-dependent mechanism. Insulin may be involved in airway repair mechanisms through modulation of epithelial cell Fn production.


1997 ◽  
Vol 273 (3) ◽  
pp. L684-L693 ◽  
Author(s):  
K. Aoshiba ◽  
S. I. Rennard ◽  
J. R. Spurzem

Cell-extracellular matrix interactions support the ability of cells to migrate into areas of inflammation and injury. The present study evaluated the ability of different matrix proteins to support bronchial epithelial cell attachment and survival. Collagens were able to support attachment and survival of normal cultured human bronchial epithelial cells but only in the presence of added soluble growth factors such as insulin, epidermal growth factor, platelet-derived growth factor, and bovine pituitary extract. In contrast, fibronectin was able to support attachment and survival of normal human bronchial epithelial cells in growth factor-deficient medium. In addition, fibronectin, in the absence of added growth factors, was able to induce integrin clustering, focal adhesion formation, and phosphorylation of focal adhesion kinase. A 120-kDa chymotryptic fragment of fibronectin containing the Arg-Gly-Asp peptide sequence was able to reproduce the effects of the whole fibronectin molecule. This study supports the concept that fibronectin has specialized roles in injury and repair.


2012 ◽  
Vol 130 (6) ◽  
pp. 1375-1383 ◽  
Author(s):  
Jin-Ah Park ◽  
Asma S. Sharif ◽  
Daniel J. Tschumperlin ◽  
Laurie Lau ◽  
Rachel Limbrey ◽  
...  

Biomedicines ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 631
Author(s):  
Luis Soriano ◽  
Tehreem Khalid ◽  
Fergal J. O'Brien ◽  
Cian O'Leary ◽  
Sally-Ann Cryan

Translation of novel inhalable therapies for respiratory diseases is hampered due to the lack of in vitro cell models that reflect the complexity of native tissue, resulting in many novel drugs and formulations failing to progress beyond preclinical assessments. The development of physiologically-representative tracheobronchial tissue analogues has the potential to improve the translation of new treatments by more accurately reflecting in vivo respiratory pharmacological and toxicological responses. Herein, advanced tissue-engineered collagen hyaluronic acid bilayered scaffolds (CHyA-B) previously developed within our group were used to evaluate bacterial and drug-induced toxicity and inflammation for the first time. Calu-3 bronchial epithelial cells and Wi38 lung fibroblasts were grown on either CHyA-B scaffolds (3D) or Transwell® inserts (2D) under air liquid interface (ALI) conditions. Toxicological and inflammatory responses from epithelial monocultures and co-cultures grown in 2D or 3D were compared, using lipopolysaccharide (LPS) and bleomycin challenges to induce bacterial and drug responses in vitro. The 3D in vitro model exhibited significant epithelial barrier formation that was maintained upon introduction of co-culture conditions. Barrier integrity showed differential recovery in CHyA-B and Transwell® epithelial cultures. Basolateral secretion of pro-inflammatory cytokines to bacterial challenge was found to be higher from cells grown in 3D compared to 2D. In addition, higher cytotoxicity and increased basolateral levels of cytokines were detected when epithelial cultures grown in 3D were challenged with bleomycin. CHyA-B scaffolds support the growth and differentiation of bronchial epithelial cells in a 3D co-culture model with different transepithelial resistance in comparison to the same co-cultures grown on Transwell® inserts. Epithelial cultures in an extracellular matrix like environment show distinct responses in cytokine release and metabolic activity compared to 2D polarised models, which better mimic in vivo response to toxic and inflammatory stimuli offering an innovative in vitro platform for respiratory drug development.


1996 ◽  
Vol 5 (3) ◽  
pp. 210-217
Author(s):  
M. M. Verheggen ◽  
H. I. M. de Bont ◽  
P. W. C. Adriaansen-Soeting ◽  
B. J. A. Goense ◽  
C. J. A. M. Tak ◽  
...  

In this study, we investigated the expression of lipocortin I and II (annexin I and I in the human bronchial epithelium, bothin vivoandin vitro. A clear expression of lipocortin I and II protein was found in the epithelium in sections of bronchial tissue. In cultured human bronchial epithelial cells we demonstrated the expression of lipocortin I and II mRNA and protein using Northern blotting, FACScan analysis and ELISA. No induction of lipocortin I or II mRNA or protein was observed after incubation with dexamethasone. Stimulation of bronchial epithelial cells with IL-1β, TNF-α or LPS for 24 h did not affect the lipocortin I or II mRNA or protein expression, although PGE2and 6-keto-PGF1αproduction was significantly increased. This IL-1β- and LPS-mediated increase in eicosanoids could be reduced by dexamethasone, but was not accompanied by an increase in lipocortin I or II expression. In human bronchial epithelial cells this particular glucocorticoid action is not mediated through lipocortin I or II induction.


2021 ◽  
Vol 11 (6) ◽  
pp. 1129-1137
Author(s):  
Yuanyuan Liu ◽  
Chao He ◽  
Xin Li ◽  
Zewen Zhang ◽  
Ju Liu ◽  
...  

The epithelial-mesenchymal transition (EMT) of bronchial epithelial cells is a critical mechanism involved in transforming growth factor beta 1 (TGF-β1) induced asthma airway remodeling. Previous study has shown that interleukin 27 (IL-27) attenuates EMT in alveolar epithelial cells, but its effects on the BEAS-2B human bronchial epithelial cell line EMT remain unknown. Herein, we explored the effects of IL-27 on BEAS-2B EMT in vivo and in vitro. In the in vivo experiments, we found that IL-27 nose-drip therapy alleviated airway remodeling, increased the epithelial phenotypic marker epithelial-cadherin (E-cadherin), and decreased the mesenchymal phenotypic marker alpha-smooth muscle actin (α-SMA) compared with the asthmatic control group. We also found that IL-27 suppressed the signal transducer and activator of transcription (STAT3) in the lung tissue of asthmatic mice. in vitro, TGF-β1-induced EMT changes, including downregulation of E-cadherin and upregulation of α-SMA, were suppressed by IL-27 treatment. Additionally, STAT3 phosphorylation was activated by TGF-β1, whereas IL-27 inhibited the activation of TGF-β1 induced STAT3 phosphorylation. Our findings indicated that IL-27 could inhibit airway remodeling by attenuating bronchial epithelial cell EMT in vivo and in vitro. Therefore, IL-27 may be a beneficial therapeutic option targeting asthmatic airway remodeling.


2000 ◽  
Vol 48 (4) ◽  
pp. 535-544 ◽  
Author(s):  
Peter H. Michelson ◽  
Margaret Tigue ◽  
Jonathan C.R. Jones

Epithelial cells attach to the basement membrane through adhesive contacts between the basal cells of the epithelium and the proteins of the extracellular matrix (ECM). The hemidesmosome (HD) is a specialized cell-ECM contact, that mediates the attachment of the epithelial cell basal surface to the ECM. In bronchial epithelial cells, the protein components that constitute the HD have not been demonstrated. Using immunohistochemical techniques, we determined that normal human bronchial epithelial (NHBE) cells express the HD cell surface integrin α6β4 and produce laminin 5, the ECM protein associated with HDs. Furthermore, expression of the HD-associated structural proteins, bullous pemphigoid antigens 1 (BPAG 1) and 2 (BPAG 2), was demonstrated in NHBE cells by immunofluorescence microscopy and immunoblot analyses. In addition, we confirmed the presence of laminin 5 in the basement membrane (BM) of bronchial epithelial biopsy specimens and of BP230, BP180, and the α6β4 integrin heterodimer at the site of bronchial epithelial cell-ECM interaction in vivo. Finally, using electron microscopy, we were able to demonstrate intact HDs in a glutaraldehyde-fixed NHBE cell monolayer. These findings suggest that bronchial epithelium forms HDs and that the laminin 5-α6β4 integrin interaction may be important in stabilizing epithelial cell adhesion to the BM in the lung.


2002 ◽  
Vol 282 (5) ◽  
pp. L1108-L1116 ◽  
Author(s):  
John R. Spurzem ◽  
Jitendrakumar Gupta ◽  
Thomas Veys ◽  
Kristen R. Kneifl ◽  
Stephen I. Rennard ◽  
...  

Bronchial epithelial cell migration is required for the repair of damaged airway epithelium. We hypothesized that bronchial epithelial cell migration during wound repair is influenced by cAMP and the activity of its cyclic nucleotide-dependent protein kinase, protein kinase A (PKA). We found that, when confluent monolayers of bronchial epithelial cells are wounded, an increase in PKA activity occurs. Augmentation of PKA activity with a cell-permeable analog of cAMP, dibutyryl adenosine 3′,5′-cyclic monophosphate, isoproterenol, or a phosphodiesterase inhibitor accelerated migration of normal bronchial epithelial cells in in vitro wound closure assays and Boyden chamber migration assays. A role for PKA activity was also confirmed with a PKA inhibitor, KT-5720, which reduced stimulated migration. Augmentation of PKA activity reduced the levels of active Rho and the formation of focal adhesions. These studies suggest that PKA activation modulates Rho activity, migration mechanisms, and thus bronchial epithelial repair mechanisms.


Sign in / Sign up

Export Citation Format

Share Document