Interleukin-10 inhibits pulmonary NF-κB activation and lung injury induced by hepatic ischemia-reperfusion

1999 ◽  
Vol 277 (5) ◽  
pp. L919-L923 ◽  
Author(s):  
Hiroyuki Yoshidome ◽  
Atsushi Kato ◽  
Michael J. Edwards ◽  
Alex B. Lentsch

Hepatic ischemia and reperfusion cause local and remote organ injury. This injury culminates from an integrated cascade of proinflammatory cytokines, chemokines, and adhesion molecules, many of which are regulated by the transcription factor nuclear factor-κB (NF-κB). The anti-inflammatory cytokine interleukin-10 (IL-10) has been shown to have inhibitory effects on NF-κB. The objective of the current study was to determine whether IL-10 could suppress pulmonary NF-κB activation and ensuing lung injury induced by hepatic ischemia-reperfusion. C57BL/6 mice underwent partial hepatic ischemia with or without intravenous administration of IL-10. Hepatic ischemia-reperfusion resulted in pulmonary NF-κB activation, increased mRNA expression of tumor necrosis factor-α (TNF-α), and macrophage inflammatory protein-2 (MIP-2), as well as increased pulmonary neutrophil accumulation and lung edema. Administration of IL-10 suppressed lung NF-κB activation, reduced TNF-α and MIP-2 mRNA expression, and decreased pulmonary neutrophil recruitment and lung injury. The data suggest that IL-10 protects against hepatic ischemia and reperfusion-induced lung injury by inhibiting lung NF-κB activation and the resulting pulmonary production of proinflammatory mediators.

2020 ◽  
Vol 14 (1) ◽  
pp. 88-100
Author(s):  
Fares E.M. Ali ◽  
Heba M. Saad Eldien ◽  
Nashwa A.M. Mostafa ◽  
Abdulrahman H. Almaeen ◽  
Mohamed R.A. Marzouk ◽  
...  

Objective: The present study was conducted to elucidate the underlying molecular mechanism as well as the potential hepatoprotective effects of royal jelly (RJ) against hepatic ischemia/reperfusion (IR) injury. Methods: Rats were assigned into four groups; sham (received vehicle), IR (30 minutes ischemia and 45 minutes reperfusion), sham pretreated with RJ (200 mg/kg P.O.), and IR pretreated with RJ (200 mg/kg P.O.). The experiment has lasted for 28 days. Results: Hepatic IR significantly induced hepatic dysfunctions, as manifested by elevation of serum transaminases, ALP and LDH levels. Moreover, hepatic IR caused a significant up-regulation of P38-MAPK, NF-κB-p65, TNF-α and MDA levels along with marked down-regulation of Nrf-2, HO-1, COX-4, cytoglobin, IκBa, IL-10, GSH, GST and SOD levels. Additionally, marked histopathological changes were observed after hepatic IR injury. On the contrary, pretreatment with RJ significantly improved hepatic functions along with the alleviation of histopathological changes. Moreover, RJ restored oxidant/antioxidant balance as well as hepatic expressions of Nrf-2, HO-1, COX-4, and cytoglobin. Simultaneously, RJ significantly mitigated the inflammatory response by down-regulation of P38-MAPK, NF-κB-p65, TNF-α expression. Conclusion: The present results revealed that RJ has successfully protected the liver against hepatic IR injury through modulation of cytoglobin, Nrf-2/HO-1/COX-4, and P38-MAPK/NF-κB-p65/TNF-α signaling pathways.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Amr H. ELKady ◽  
Bataa M. Elkafoury ◽  
Dalia A. Saad ◽  
Doaa M. Abd el-Wahed ◽  
Walaa Baher ◽  
...  

Abstract Background Hepatic ischemia reperfusion (IR) injury is considered as a main cause of liver damage and dysfunction. The l-arginine/nitric oxide pathway seems to be relevant during this process of IR. Although acute intense exercise challenges the liver with increased reactive oxygen species (ROS), regular training improves hepatic antioxidant status. Also, oxytocin (Oxy), besides its classical functions, it exhibits a potent antistress, anti-inflammatory, and antioxidant effects. This study was designed to evaluate the hepatic functional and structural changes induced by hepatic IR injury in rats and to probe the effect and potential mechanism of moderate intensity exercise training and/or Oxy, in comparison to a nitric oxide donor, l-arginine, against liver IR-induced damage. Results Compared to the sham-operated control group, the hepatic IR group displayed a significant increase in serum levels of ALT and AST, plasma levels of MDA and TNF-α, and significant decrease in plasma TAC and nitrite levels together with the worsening of liver histological picture. L-Arg, Oxy, moderate intensity exercise, and the combination of both Oxy and moderate intensity exercises ameliorated these deleterious effects that were evident by the significant decrease in serum levels of ALT and AST, significant elevation in TAC and nitrite, and significant decline in lipid peroxidation (MDA) and TNF-α, besides regression of histopathological score regarding hepatocyte necrosis, vacuolization, and nuclear pyknosis. Both the moderate intensity exercise-trained group and Oxy-treated group showed a significant decline in TNF-α and nitrite levels as compared to l-Arg-treated group. The Oxy-treated group showed statistical insignificant changes in serum levels of ALT, AST, and plasma levels of nitrite, MDA, TAC, and TNF-α as compared to moderate intensity exercise-trained group. Conclusion The combination of both moderate intensity exercise and Oxy displayed more pronounced hepatoprotection on comparison with l-Arg which could be attributed to their more prominent antioxidant and anti-inflammatory effects but not due to their NO-enhancing effect.


2021 ◽  
Vol 28 (9) ◽  
pp. 1671
Author(s):  
Levent Demirtas ◽  
Cebrail Gursul ◽  
Ahmet Gurbuzel ◽  
Ilyas Sayar ◽  
Mehmet Gurbuzel ◽  
...  

2019 ◽  
Vol 48 (4) ◽  
pp. 030006051989243
Author(s):  
HaiZou bo ◽  
XiaoSun feng

Objective To investigate the influence of curcumin on the Notch2/Hes-1 pathway after pulmonary injury induction via limb ischemia–reperfusion (I/R). Methods Adult male Sprague–Dawley rats were randomly divided into four groups (n = 30 each): sham, I/R, curcumin post-treatment (I/R+Cur), and inhibitor (I/R+DAPT). Hind-limb ischemia was induced for 4 hours, followed by reperfusion for 4 hours. After ischemia, curcumin (200 mg/kg) or DAPT (0.5 µm) was injected intraperitoneally in the I/R+Cur or I/R+DAPT group, respectively. PaO2 was examined after 4 hours of reperfusion. Pathological changes in the lung and the apoptotic index (AI) were examined. Lung malondialdehyde (MDA), tumor necrosis factor (TNF)-α, and interleukin (IL)-1β levels, the wet/dry (W/D) ratio, semi-quantitative score of lung injury (SSLI), and Notch2 protein and Hes-1 mRNA expression were also examined. Results In the I/R group, inflammatory changes were observed, AI increased, and MDA, SSLI, W/D, TNF-α, IL-1β, Notch2, and Hes1-mRNA expression increased, while PaO2 decreased compared with the Sham group. Pathological changes in the I/R+Cur group were reversed. All indexes in the I/R+DAPT and I/R+Cur group were similar. Conclusion Curcumin post-treatment reduced I/R-induced lung injury in rats. Its mechanism may be related to the inhibition of Notch2/Hes-1 signaling pathway and the release of inflammatory factors.


2018 ◽  
Vol 38 (5) ◽  
Author(s):  
Di Liu ◽  
Xin Jin ◽  
Chunqi Zhang ◽  
You Shang

Purpose: This article aimed to study the role of sevoflurane pre-conditioning in hepatic ischemia–reperfusion and its potential mechanism. Methods: Rat liver ischemia–reperfusion model was constructed. Serum TNF-α, IL-1β, IL-10, and IL-6 concentrations were detected by ELISA. Malondialdehyde (MDA), superoxide dismutase (SOD), and nitric oxide (NO) in liver homogenate were determined. Hematoxylin–Eosin (HE) staining, Tunel, and immunohistochemistry were performed. Ischemia–reperfusion hepatocyte model was established. Cells transfection was conducted. Apoptosis was observed by flow cytometry. Quantitative real-time PCR (qRT-PCR) and Western blotting analysis were used. Results: Compared with I/R group, liver damage degree, liver cell apoptosis, and glucose regulatory protein 78 (Grp78) expression was obviously reduced in rats of SEV group. TNF-α, IL-1β, and IL-6 concentrations were also significantly increased (P<0.01). MDA and NO concentrations were dramatically lower (P<0.01) and SOD concentration was significantly higher (P<0.01). Apoptosis rate, Grp78, PERK, eIF2α, and p-c-JNK/JNK expression was also significantly decreased (P<0.01). Sevoflurane significantly reduced apoptosis and expression of PERK, eIF2α, p-c-JNK/JNK by inhibiting the expression of Grp78 (P<0.01). Conclusion: Sevoflurane relieves hepatic ischemia–reperfusion injury by inhibiting the expression of Grp78.


1999 ◽  
Vol 81 (1) ◽  
pp. 33-37 ◽  
Author(s):  
Hiroyuki Yoshidome ◽  
Alex B. Lentsch ◽  
William G. Cheadle ◽  
Frederick N. Miller ◽  
Michael J. Edwards

2010 ◽  
Vol 27 ◽  
pp. 185
Author(s):  
K. Kalimeris ◽  
N. Arkadopoulos ◽  
C. Nastos ◽  
N. Papoutsidakis ◽  
G. Kostopanagiotou

Sign in / Sign up

Export Citation Format

Share Document