PKC and ERK are differentially involved in gonadotropin-releasing hormone-induced growth hormone gene expression in the goldfish pituitary

2005 ◽  
Vol 289 (6) ◽  
pp. R1625-R1633 ◽  
Author(s):  
Christian Klausen ◽  
Takeshi Tsuchiya ◽  
John P. Chang ◽  
Hamid R. Habibi

Gonadotropin-releasing hormone (GnRH) is produced by the hypothalamus and stimulates the synthesis and secretion of gonadotropin hormones. In addition, GnRH also stimulates the production and secretion of growth hormone (GH) in some fish species and in humans with certain clinical disorders. In the goldfish pituitary, GH secretion and gene expression are regulated by two endogenous forms of GnRH known as salmon GnRH and chicken GnRH-II. It is well established that PKC mediates GnRH-stimulated GH secretion in the goldfish pituitary. In contrast, the signal transduction of GnRH-induced GH gene expression has not been elucidated in any model system. In this study, we demonstrate, for the first time, the presence of novel and atypical PKC isoforms in the pituitary of a fish. Moreover, our results indicate that conventional PKCα is present selectively in GH-producing cells. Treatment of primary cultures of dispersed goldfish pituitary cells with PKC activators (phorbol ester or diacylglycerol analog) did not affect basal or GnRH-induced GH mRNA levels, and two different inhibitors of PKC (calphostin C and GF109203X) did not reduce the effects of GnRH on GH gene expression. Together, these results suggest that, in contrast to secretion, conventional and novel PKCs are not involved in GnRH-stimulated increases in GH mRNA levels in the goldfish pituitary. Instead, PD98059 inhibited GnRH-induced GH gene expression, suggesting that the ERK signaling pathway is involved. The results presented here provide novel insights into the functional specificity of GnRH-induced signaling and the regulation of GH gene expression.

2008 ◽  
Vol 295 (6) ◽  
pp. R1815-R1821 ◽  
Author(s):  
Luis Fabián Canosa ◽  
Norm Stacey ◽  
Richard Ector Peter

In goldfish, circulating LH and growth hormone (GH) levels surge at the time of ovulation. In the present study, changes in gene expression of salmon gonadotropin-releasing hormone (sGnRH), chicken GnRH-II (cGnRH-II), somatostatin (SS) and pituitary adenylate cyclase activating polypeptide (PACAP) were analyzed during temperature- and spawning substrate-induced ovulation in goldfish. The results demonstrated that increases in PACAP gene expression during ovulation are best correlated with the GH secretion profile. These results suggest that PACAP, instead of GnRH, is involved in the control of GH secretion during ovulation. Increases of two of the SS transcripts during ovulation are interpreted as the activation of a negative feedback mechanism triggered by high GH levels. The results showed a differential regulation of sGnRH and cGnRH-II gene expression during ovulation, suggesting that sGnRH controls LH secretion, whereas cGnRH-II correlates best with spawning behavior. This conclusion is further supported by the finding that nonovulated fish induced to perform spawning behavior by prostaglandin F2α treatment increased cGnRH-II expression in both forebrain and midbrain, but decreased sGnRH expression in the forebrain.


2002 ◽  
Vol 80 (9) ◽  
pp. 915-924 ◽  
Author(s):  
Christian Klausen ◽  
John P Chang ◽  
Hamid R Habibi

The goldfish brain contains two molecular forms of gonadotropin-releasing hormone (GnRH): salmon GnRH (sGnRH) and chicken GnRH-II (cGnRH-II). In a preliminary report, we demonstrated the stimulation of gonadotropin hormone (GtH) subunit and growth hormone (GH) mRNA levels by a single dose of GnRH at a single time point in the goldfish pituitary. Here we extend the work and demonstrate time- and dose-related effects of sGnRH and cGnRH-II on GtH subunit and GH gene expression in vivo and in vitro. The present study demonstrates important differences between the time- and dose-related effects of sGnRH and cGnRH-II on GtH subunit and GH mRNA levels. Using primary cultures of dispersed pituitary cells, the minimal effective dose of cGnRH-II required to stimulate GtH subunit mRNA levels was found to be 10-fold lower than that of sGnRH. In addition, the magnitudes of the increases in GtH subunit and GH mRNA levels stimulated by cGnRH-II were found to be higher than the sGnRH-induced responses. However, no significant difference was observed between sGnRH and cGnRH-II-induced responses in vivo. Time-related studies also revealed significant differences between sGnRH- and cGnRH-II-induced production of GtH subunit and GH mRNA in the goldfish pituitary. In general, the present study provides novel information on time- and dose-related effects of sGnRH and cGnRH-II on GtH subunit and GH mRNA levels and provides a framework for further investigation of GnRH mechanisms of action in the goldfish pituitary.Key words: gonadotropin-releasing hormone, gonadotropin hormone, growth hormone, gene expression, goldfish.


2005 ◽  
Vol 34 (2) ◽  
pp. 415-432 ◽  
Author(s):  
Hong Zhou ◽  
Yonghua Jiang ◽  
Wendy K W Ko ◽  
Wensheng Li ◽  
Anderson O L Wong

Growth hormone (GH) is known to stimulate luteinizing hormone (LH) release via paracrine interactions between somatotrophs and gonadotrophs. However, it is unclear if LH can exert a reciprocal effect to modulate somatotroph functions. Here we examined the paracrine effects of LH on GH gene expression using grass carp pituitary cells as a cell model. LH receptors were identified in grass carp somatotrophs and their activation by human chorionic gonadotropin (hCG) increased ‘steady-state’ GH mRNA levels. Removal of endogenous LH by immunoneutralization using LH antiserum inhibited GH release and GH mRNA expression. GH secretagogues, including gonadotrophin releasing hormone (GnRH), pituitary adenylate cyclase-activating polypeptide (PACAP) and apomorphine, were effective in elevating GH mRNA levels but these stimulatory actions were blocked by LH antiserum. In pituitary cells pretreated with actinomycin D, the half-life of GH mRNA was not affected by hCG but was enhanced by LH immunoneutralization. Treatment with LH antiserum also suppressed basal levels of mature GH mRNA and primary transcripts. hCG increased cAMP synthesis in carp pituitary cells and hCG-induced GH mRNA expression was mimicked by forskolin but suppressed by inhibiting adenylate cyclase and protein kinase A. Similarly, the stimulatory actions of hCG and forskolin on GH mRNA expression were blocked by inhibiting Janus kinase 2 (JAK2) and MAP kinase (MAPK), including P42/44MAPK and P38 MAPK. These results suggest that LH is essential for the maintenance of GH release, GH gene expression, and somatotroph responsiveness to GH-releasing factors. The paracrine actions of LH on GH mRNA expression are mediated by a concurrent increase in GH gene transcription and GH mRNA turnover, probably through JAK2/MAPK coupled to the cAMP-dependent pathway.


1994 ◽  
Vol 14 (11) ◽  
pp. 7105-7110 ◽  
Author(s):  
K D Davis ◽  
T J Berrodin ◽  
J E Stelmach ◽  
J D Winkler ◽  
M A Lazar

Retinoids regulate gene transcription by interacting with both retinoic acid (RA) receptors (RARs) and retinoid X receptors (RXRs). Since unliganded RXRs can act as heterodimerization partners for RARs and other nuclear hormone receptors, it is unclear whether ligand binding by RXRs actually regulates the expression of naturally occurring genes. To address this issue, we synthesized the RXR-selective retinoid SR11237 and confirmed its specificity in transient transfection and proteolytic susceptibility assays before using it to assess the contribution of ligand-activated RXRs to retinoid action. Unlike RAR ligands, SR11237 did not increase endogenous RAR beta mRNA levels in F9 embryonal carcinoma cells, even though it activated transcription of an RXR-responsive reporter gene in these cells. Thus, it is likely that RARs mediate the induction of RAR beta gene expression by RA. In contrast, the RXR-specific ligand induced rat growth hormone mRNA in GH3 pituitary cells, indicating that the effects of RA on growth hormone gene expression at least in part involve ligand binding to endogenous RXRs in vivo. Our results indicate that in addition to serving as cofactors for other nuclear hormone receptors, endogenous RXRs can function as ligand-dependent regulators of gene expression, i.e., classical nuclear hormone receptors.


2007 ◽  
Vol 292 (6) ◽  
pp. E1750-E1762 ◽  
Author(s):  
Xinyan Wang ◽  
Mable M. S. Chu ◽  
Anderson O. L. Wong

Pituitary adenylate cyclase-activating polypeptide (PACAP) is a potent growth hormone (GH)-releasing factor in lower vertebrates. However, its functional interactions with other GH regulators have not been fully characterized. In fish models, norepinephrine (NE) inhibits GH release at the pituitary cell level, but its effects on GH synthesis have yet to be determined. We examined adrenergic inhibition of PACAP-induced GH secretion and GH gene expression using grass carp pituitary cells as a cell model. Through activation of pituitary α2-adrenoreceptors, NE or the α2-agonist clonidine reduced both basal and PACAP-induced GH release and GH mRNA expression. In carp pituitary cells, clonidine also suppressed cAMP production and intracellular Ca2+ levels and blocked PACAP induction of these two second messenger signals. In GH3 cells transfected with a reporter carrying the grass carp GH promoter, PACAP stimulation increased GH promoter activity, and this stimulatory effect could be abolished by NE treatment. In parallel experiments, clonidine reduced GH primary transcript and GH promoter activity without affecting GH mRNA stability, and these inhibitory actions were mimicked by inhibiting adenylate cyclase (AC), blocking protein kinase A (PKA), removing extracellular Ca2+ in the culture medium, or inactivating L-type voltage-sensitive Ca2+ channels (VSCC). Since our recent studies have shown that PACAP can induce GH secretion in carp pituitary cells through cAMP/PKA- and Ca2+/calmodulin-dependent mechanisms, these results, taken together, suggest that α2-adrenergic stimulation in the carp pituitary may inhibit PACAP-induced GH release and GH gene transcription by blocking the AC/cAMP/PKA pathway and Ca2+ entry through L-type VSCC.


2007 ◽  
Vol 292 (1) ◽  
pp. E203-E214 ◽  
Author(s):  
Anderson O. L. Wong ◽  
Maggie C. Y. Chuk ◽  
Hiu Chi Chan ◽  
Eric K. Y. Lee

In the goldfish, norepinephrine (NE) inhibits growth hormone (GH) secretion through activation of pituitary α2-adrenergic receptors. Interestingly, a GH rebound is observed after NE withdrawal, which can be markedly enhanced by prior exposure to gonadotropin-releasing hormone (GnRH). Here we examined the mechanisms responsible for GnRH potentiation of this “postinhibition” GH rebound. In goldfish pituitary cells, α2-adrenergic stimulation suppressed both basal and GnRH-induced GH mRNA expression, suggesting that a rise in GH synthesis induced by GnRH did not contribute to its potentiating effect. Using a column perifusion approach, GnRH given during NE treatment consistently enhanced the GH rebound following NE withdrawal. This potentiating effect was mimicked by activation of PKC and adenylate cyclase (AC) but not by induction of Ca2+ entry through voltage-sensitive Ca2+ channels (VSCC). Furthermore, GnRH-potentiated GH rebound could be alleviated by inactivation of PKC, removal of extracellular Ca2+, blockade of VSCC, and inhibition of Ca2+/calmodulin (CaM)-dependent protein kinase II (CaMKII). Inactivation of AC and PKA, however, was not effective in this regard. These results, as a whole, suggest that GnRH potentiation of GH rebound following NE inhibition is mediated by PKC coupled to Ca2+ entry through VSCC and subsequent activation of CaMKII. Apparently, the Ca2+-dependent cascades are involved in GH secretion during the rebound phase but are not essential for the initiation of GnRH potentiation. Since GnRH has been previously shown to have no effects on cAMP synthesis in goldfish pituitary cells, the involvement of cAMP-dependent mechanisms in GnRH potentiation is rather unlikely.


1994 ◽  
Vol 14 (11) ◽  
pp. 7105-7110
Author(s):  
K D Davis ◽  
T J Berrodin ◽  
J E Stelmach ◽  
J D Winkler ◽  
M A Lazar

Retinoids regulate gene transcription by interacting with both retinoic acid (RA) receptors (RARs) and retinoid X receptors (RXRs). Since unliganded RXRs can act as heterodimerization partners for RARs and other nuclear hormone receptors, it is unclear whether ligand binding by RXRs actually regulates the expression of naturally occurring genes. To address this issue, we synthesized the RXR-selective retinoid SR11237 and confirmed its specificity in transient transfection and proteolytic susceptibility assays before using it to assess the contribution of ligand-activated RXRs to retinoid action. Unlike RAR ligands, SR11237 did not increase endogenous RAR beta mRNA levels in F9 embryonal carcinoma cells, even though it activated transcription of an RXR-responsive reporter gene in these cells. Thus, it is likely that RARs mediate the induction of RAR beta gene expression by RA. In contrast, the RXR-specific ligand induced rat growth hormone mRNA in GH3 pituitary cells, indicating that the effects of RA on growth hormone gene expression at least in part involve ligand binding to endogenous RXRs in vivo. Our results indicate that in addition to serving as cofactors for other nuclear hormone receptors, endogenous RXRs can function as ligand-dependent regulators of gene expression, i.e., classical nuclear hormone receptors.


2005 ◽  
Vol 289 (6) ◽  
pp. R1634-R1643 ◽  
Author(s):  
Christian Klausen ◽  
David L. Severson ◽  
John P. Chang ◽  
Hamid R. Habibi

Gonadotropin-releasing hormone (GnRH) is an important regulator of reproduction in all vertebrates through its actions on the production and secretion of pituitary gonadotropin hormones (GtHs). Most vertebrate species express at least two GnRHs, including one form, designated chicken (c)GnRH-II or type II GnRH, which has been well conserved throughout evolution. The goldfish brain and pituitary contain salmon GnRH and cGnRH-II. In goldfish, GnRH-induced luteinizing hormone (LH) secretion involves PKC; however, whether PKC mediates GnRH stimulation of GtH subunit mRNA levels is unknown. In this study, we used inhibitors and activators of PKC to examine its possible involvement in GnRH-induced increases in GtH-α, follicle-stimulating hormone (FSH)-β and LH-β mRNA levels in primary cultures of dispersed goldfish pituitary cells. Treatment with PKC inhibitors calphostin C and GF109203X unmasked a basal repression of GtH subunit mRNA levels by PKC; both inhibitors increased GtH subunit mRNA levels in a dose-dependent manner. PKC activators, 12- O-tetradecanoylphorbol 13-acetate (TPA), and 1,2-dioctanoyl- sn-glycerol, stimulated GtH subunit mRNA levels, whereas an inactive phorbol ester (4-α-TPA) was without effect. Thus, a dual, inhibitory and stimulatory, influence for PKC in the regulation of GtH subunit mRNA levels is suggested. In contrast, PKC inhibitor- and activator-induced effects were, for the most part, additive to those of GnRH, suggesting that conventional and novel PKCs are unlikely to be involved in GnRH-stimulated increases in GtH subunit mRNA levels. Our data illustrate major differences in the signal transduction of GnRH effects on GtH secretion and gene expression in the goldfish pituitary.


2001 ◽  
Vol 169 (3) ◽  
pp. 499-509 ◽  
Author(s):  
TE Porter ◽  
CE Dean ◽  
MM Piper ◽  
KL Medvedev ◽  
S Ghavam ◽  
...  

Prior research indicates that growth hormone (GH) cell differentiation can be induced prematurely by treatment with glucocorticoids in vitro and in vivo. However, the nature of these responses has not been fully characterized. In this study, the time course of corticosterone induction of GH-secreting cells in cultures of chicken embryonic pituitary cells, responsiveness of differentiated somatotrophs to GH secretagogues, localization of somatotroph precursor cells within the pituitary gland, and the effect of corticosterone on GH gene expression were determined to better define the involvement of glucocorticoids in somatotroph recruitment during development. Anterior pituitary cells from embryonic day 12 chicken embryos were cultured in 10(-9) M corticosterone for 4 to 48 h and were then subjected to reverse haemolytic plaque assays (RHPAs) for GH. Corticosterone treatment for as short as 16 h increased the percentage of GH cells compared with the control. When corticosterone was removed after 48 h and cells were cultured for an additional 3 days in medium alone, the percentage of GH secretors decreased but remained greater than the proportion of somatotrophs among cells that were never treated with corticosterone. To determine if prematurely differentiated somatotrophs were responsive to GH secretagogues, cells were exposed to corticosterone for 48 h and then subjected to GH RHPAs in the presence or absence of GH-releasing hormone (GHRH) or thyrotropin-releasing hormone (TRH). Approximately half of the somatotrophs induced to differentiate with corticosterone subsequently released more GH in response to GHRH and TRH than in their absence. The somatotroph precursor cells were localized within the anterior pituitary by culturing cells from the caudal lobe and cephalic lobe of the anterior pituitary separately. Corticosterone induction of GH cells was substantially greater in cultures derived from the caudal lobe of the anterior pituitary, where somatotroph differentiation normally occurs. GH gene expression was evaluated by ribonuclease protection assay and by in situ hybridization. Corticosterone increased GH mRNA in cultured cells by greater than fourfold. Moreover, corticosterone-induced somatotroph differentiation involved GH gene expression in cells not expressing GH mRNA previously, and the extent of somatotroph differentiation was augmented by treatment with GHRH in combination with corticosterone. We conclude that corticosterone increases the number of GH-secreting cells within 16 h, increases GH gene expression in cells formerly not expressing this gene, confers somatotroph sensitivity to GHRH and TRH, and induces GH production in a precursor population found primarily in the caudal lobe of the anterior pituitary, a site consistent with GH localization in adults. These findings support the hypothesis that glucocorticoids function to induce the final stages in the differentiation of fully functional somatotrophs from cells previously committed to this lineage.


1990 ◽  
Vol 125 (2) ◽  
pp. 251-256 ◽  
Author(s):  
S. Morita ◽  
K. Matsuo ◽  
M. Tsuruta ◽  
S. Leng ◽  
S. Yamashita ◽  
...  

ABSTRACT We have previously demonstrated that retinoic acid (RA) as well as thyroid hormone stimulates GH gene expression. To clarify the relationship between the action of RA and thyroid hormone, pituitary-specific gene expression was investigated further in rat pituitary cells. Rat clonal pituitary cells, GH3, were treated with RA with or without tri-iodothyronine (T3) for up to 3 days. After treatment with 10–1000 nmol RA/1 with or without 0·1–10 nmol T3/1, medium was collected for radioimmunoassay and cells were subjected to RNA extraction, and GH and prolactin gene expression was analysed using 32P-labelled rat GH and rat prolactin cDNA probes respectively. The data demonstrated the dose–responsive manner of the stimulatory effects of RA and T3 on GH secretion with T3-depleted media. The action of RA was additive to that of T3 for GH secretion when maximum effective doses of RA or T3 were used. Using dot blot and Northern gel analysis, it was shown that RA increased GH mRNA levels in T3-depleted media, and that this action of RA was additive to that of T3 on the induction of GH mRNA levels. In contrast, neither RA nor T3 stimulated the secretion of prolactin and prolactin mRNA levels in these cells. Our results indicate that RA stimulates GH mRNA increment and GH secretion in T3-depleted media, and that the stimulatory effect of RA is additive to the maximum effective dose of T3. Journal of Endocrinology (1990) 125, 251–256


Sign in / Sign up

Export Citation Format

Share Document