Endogenous retinoid X receptors can function as hormone receptors in pituitary cells

1994 ◽  
Vol 14 (11) ◽  
pp. 7105-7110
Author(s):  
K D Davis ◽  
T J Berrodin ◽  
J E Stelmach ◽  
J D Winkler ◽  
M A Lazar

Retinoids regulate gene transcription by interacting with both retinoic acid (RA) receptors (RARs) and retinoid X receptors (RXRs). Since unliganded RXRs can act as heterodimerization partners for RARs and other nuclear hormone receptors, it is unclear whether ligand binding by RXRs actually regulates the expression of naturally occurring genes. To address this issue, we synthesized the RXR-selective retinoid SR11237 and confirmed its specificity in transient transfection and proteolytic susceptibility assays before using it to assess the contribution of ligand-activated RXRs to retinoid action. Unlike RAR ligands, SR11237 did not increase endogenous RAR beta mRNA levels in F9 embryonal carcinoma cells, even though it activated transcription of an RXR-responsive reporter gene in these cells. Thus, it is likely that RARs mediate the induction of RAR beta gene expression by RA. In contrast, the RXR-specific ligand induced rat growth hormone mRNA in GH3 pituitary cells, indicating that the effects of RA on growth hormone gene expression at least in part involve ligand binding to endogenous RXRs in vivo. Our results indicate that in addition to serving as cofactors for other nuclear hormone receptors, endogenous RXRs can function as ligand-dependent regulators of gene expression, i.e., classical nuclear hormone receptors.

1994 ◽  
Vol 14 (11) ◽  
pp. 7105-7110 ◽  
Author(s):  
K D Davis ◽  
T J Berrodin ◽  
J E Stelmach ◽  
J D Winkler ◽  
M A Lazar

Retinoids regulate gene transcription by interacting with both retinoic acid (RA) receptors (RARs) and retinoid X receptors (RXRs). Since unliganded RXRs can act as heterodimerization partners for RARs and other nuclear hormone receptors, it is unclear whether ligand binding by RXRs actually regulates the expression of naturally occurring genes. To address this issue, we synthesized the RXR-selective retinoid SR11237 and confirmed its specificity in transient transfection and proteolytic susceptibility assays before using it to assess the contribution of ligand-activated RXRs to retinoid action. Unlike RAR ligands, SR11237 did not increase endogenous RAR beta mRNA levels in F9 embryonal carcinoma cells, even though it activated transcription of an RXR-responsive reporter gene in these cells. Thus, it is likely that RARs mediate the induction of RAR beta gene expression by RA. In contrast, the RXR-specific ligand induced rat growth hormone mRNA in GH3 pituitary cells, indicating that the effects of RA on growth hormone gene expression at least in part involve ligand binding to endogenous RXRs in vivo. Our results indicate that in addition to serving as cofactors for other nuclear hormone receptors, endogenous RXRs can function as ligand-dependent regulators of gene expression, i.e., classical nuclear hormone receptors.


2005 ◽  
Vol 289 (6) ◽  
pp. R1625-R1633 ◽  
Author(s):  
Christian Klausen ◽  
Takeshi Tsuchiya ◽  
John P. Chang ◽  
Hamid R. Habibi

Gonadotropin-releasing hormone (GnRH) is produced by the hypothalamus and stimulates the synthesis and secretion of gonadotropin hormones. In addition, GnRH also stimulates the production and secretion of growth hormone (GH) in some fish species and in humans with certain clinical disorders. In the goldfish pituitary, GH secretion and gene expression are regulated by two endogenous forms of GnRH known as salmon GnRH and chicken GnRH-II. It is well established that PKC mediates GnRH-stimulated GH secretion in the goldfish pituitary. In contrast, the signal transduction of GnRH-induced GH gene expression has not been elucidated in any model system. In this study, we demonstrate, for the first time, the presence of novel and atypical PKC isoforms in the pituitary of a fish. Moreover, our results indicate that conventional PKCα is present selectively in GH-producing cells. Treatment of primary cultures of dispersed goldfish pituitary cells with PKC activators (phorbol ester or diacylglycerol analog) did not affect basal or GnRH-induced GH mRNA levels, and two different inhibitors of PKC (calphostin C and GF109203X) did not reduce the effects of GnRH on GH gene expression. Together, these results suggest that, in contrast to secretion, conventional and novel PKCs are not involved in GnRH-stimulated increases in GH mRNA levels in the goldfish pituitary. Instead, PD98059 inhibited GnRH-induced GH gene expression, suggesting that the ERK signaling pathway is involved. The results presented here provide novel insights into the functional specificity of GnRH-induced signaling and the regulation of GH gene expression.


2005 ◽  
Vol 34 (2) ◽  
pp. 415-432 ◽  
Author(s):  
Hong Zhou ◽  
Yonghua Jiang ◽  
Wendy K W Ko ◽  
Wensheng Li ◽  
Anderson O L Wong

Growth hormone (GH) is known to stimulate luteinizing hormone (LH) release via paracrine interactions between somatotrophs and gonadotrophs. However, it is unclear if LH can exert a reciprocal effect to modulate somatotroph functions. Here we examined the paracrine effects of LH on GH gene expression using grass carp pituitary cells as a cell model. LH receptors were identified in grass carp somatotrophs and their activation by human chorionic gonadotropin (hCG) increased ‘steady-state’ GH mRNA levels. Removal of endogenous LH by immunoneutralization using LH antiserum inhibited GH release and GH mRNA expression. GH secretagogues, including gonadotrophin releasing hormone (GnRH), pituitary adenylate cyclase-activating polypeptide (PACAP) and apomorphine, were effective in elevating GH mRNA levels but these stimulatory actions were blocked by LH antiserum. In pituitary cells pretreated with actinomycin D, the half-life of GH mRNA was not affected by hCG but was enhanced by LH immunoneutralization. Treatment with LH antiserum also suppressed basal levels of mature GH mRNA and primary transcripts. hCG increased cAMP synthesis in carp pituitary cells and hCG-induced GH mRNA expression was mimicked by forskolin but suppressed by inhibiting adenylate cyclase and protein kinase A. Similarly, the stimulatory actions of hCG and forskolin on GH mRNA expression were blocked by inhibiting Janus kinase 2 (JAK2) and MAP kinase (MAPK), including P42/44MAPK and P38 MAPK. These results suggest that LH is essential for the maintenance of GH release, GH gene expression, and somatotroph responsiveness to GH-releasing factors. The paracrine actions of LH on GH mRNA expression are mediated by a concurrent increase in GH gene transcription and GH mRNA turnover, probably through JAK2/MAPK coupled to the cAMP-dependent pathway.


2002 ◽  
Vol 80 (9) ◽  
pp. 915-924 ◽  
Author(s):  
Christian Klausen ◽  
John P Chang ◽  
Hamid R Habibi

The goldfish brain contains two molecular forms of gonadotropin-releasing hormone (GnRH): salmon GnRH (sGnRH) and chicken GnRH-II (cGnRH-II). In a preliminary report, we demonstrated the stimulation of gonadotropin hormone (GtH) subunit and growth hormone (GH) mRNA levels by a single dose of GnRH at a single time point in the goldfish pituitary. Here we extend the work and demonstrate time- and dose-related effects of sGnRH and cGnRH-II on GtH subunit and GH gene expression in vivo and in vitro. The present study demonstrates important differences between the time- and dose-related effects of sGnRH and cGnRH-II on GtH subunit and GH mRNA levels. Using primary cultures of dispersed pituitary cells, the minimal effective dose of cGnRH-II required to stimulate GtH subunit mRNA levels was found to be 10-fold lower than that of sGnRH. In addition, the magnitudes of the increases in GtH subunit and GH mRNA levels stimulated by cGnRH-II were found to be higher than the sGnRH-induced responses. However, no significant difference was observed between sGnRH and cGnRH-II-induced responses in vivo. Time-related studies also revealed significant differences between sGnRH- and cGnRH-II-induced production of GtH subunit and GH mRNA in the goldfish pituitary. In general, the present study provides novel information on time- and dose-related effects of sGnRH and cGnRH-II on GtH subunit and GH mRNA levels and provides a framework for further investigation of GnRH mechanisms of action in the goldfish pituitary.Key words: gonadotropin-releasing hormone, gonadotropin hormone, growth hormone, gene expression, goldfish.


Sign in / Sign up

Export Citation Format

Share Document