scholarly journals Regulation of mitochondrial morphology and function by O-GlcNAcylation in neonatal cardiac myocytes

2011 ◽  
Vol 300 (6) ◽  
pp. R1296-R1302 ◽  
Author(s):  
Ayako Makino ◽  
Jorge Suarez ◽  
Thomas Gawlowski ◽  
Wenlong Han ◽  
Hong Wang ◽  
...  

Mitochondria are crucial organelles in cell life serving as a source of energy production and as regulators of Ca2+ homeostasis, apoptosis, and development. Mitochondria frequently change their shape by fusion and fission, and recent research on these morphological dynamics of mitochondria has highlighted their role in normal cell physiology and disease. In this study, we investigated the effect of high glucose on mitochondrial dynamics in neonatal cardiac myocytes (NCMs). High-glucose treatment of NCMs significantly decreased the level of optical atrophy 1 (OPA1) (mitochondrial fusion-related protein) protein expression. NCMs exhibit two different kinds of mitochondrial structure: round shape around the nuclear area and elongated tubular structures in the pseudopod area. High-glucose-treated NCMs exhibited augmented mitochondrial fragmentation in the pseudopod area. This effect was significantly decreased by OPA1 overexpression. High-glucose exposure also led to increased O-GlcNAcylation of OPA1 in NCMs. GlcNAcase (GCA) overexpression in high-glucose-treated NCMs decreased OPA1 protein O-GlcNAcylation and significantly increased mitochondrial elongation. In addition to the morphological change caused by high glucose, we observed that high glucose decreased mitochondrial membrane potential and complex IV activity and that OPA1 overexpression increased both levels to the control level. These data suggest that decreased OPA1 protein level and increased O-GlcNAcylation of OPA1 protein by high glucose lead to mitochondrial dysfunction by increasing mitochondrial fragmentation, decreasing mitochondrial membrane potential, and attenuating the activity of mitochondrial complex IV, and that overexpression of OPA1 and GCA in cardiac myocytes may help improve the cardiac dysfunction in diabetes.

1996 ◽  
Vol 44 (12) ◽  
pp. 1363-1372 ◽  
Author(s):  
M Poot ◽  
Y Z Zhang ◽  
J A Krämer ◽  
K S Wells ◽  
L J Jones ◽  
...  

Investigation of mitochondrial morphology and function has been hampered because photostable, mitochondrion-specific stains that are retained in fixed, permeabilized cells have not been available. We found that in live cell preparations, the CMXRos and H2-CMXRos dyes were more photostable than rhodamine 123. In addition, fluorescence and morphology of mitochondria stained with the CMXRos and CMXRos-H2 dyes were preserved even after formaldehyde fixation and acetone permeabilization. Using epifluorescence microscopy, we showed that CMXRos and H2-CMXRos dye fluorescence fully co-localized with antibodies to subunit I of cytochrome c oxidase, indicating that the dyes specifically stain mitochondria. Confocal microscopy of these mitochondria yielded colored banding patterns, suggesting that these dyes and the mitochondrial enzyme localize to different suborganellar regions. Therefore, these stains provide powerful tools for detailed analysis of mitochondrial fine structure. We also used poisons that decrease mitochondrial membrane potential and an inhibitor of respiration complex II to show by flow cytometry that the fluorescence intensity of CMXRos and H2-CMXRos dye staining responds to changes in mitochondrial membrane potential and function. Hence, CMXRos has the potential to monitor changes in mitochondrial function. In addition, CMXRos staining was used in conjunction with spectrally distinct fluorescent probes for the cell nucleus and the microtubule network to concomitantly evaluate multiple features of cell morphology.


2021 ◽  
Vol 8 ◽  
Author(s):  
Domenico Sergi ◽  
Natalie Luscombe-Marsh ◽  
Nenad Naumovski ◽  
Mahinda Abeywardena ◽  
Nathan O'Callaghan

The chain length of saturated fatty acids may dictate their impact on inflammation and mitochondrial dysfunction, two pivotal players in the pathogenesis of insulin resistance. However, these paradigms have only been investigated in animal models and cell lines so far. Thus, the aim of this study was to compare the effect of palmitic (PA) (16:0) and lauric (LA) (12:0) acid on human primary myotubes mitochondrial health and metabolic inflammation. Human primary myotubes were challenged with either PA or LA (500 μM). After 24 h, the expression of interleukin 6 (IL-6) was assessed by quantitative polymerase chain reaction (PCR), whereas Western blot was used to quantify the abundance of the inhibitor of nuclear factor κB (IκBα), electron transport chain complex proteins and mitofusin-2 (MFN-2). Mitochondrial membrane potential and dynamics were evaluated using tetraethylbenzimidazolylcarbocyanine iodide (JC-1) and immunocytochemistry, respectively. PA, contrarily to LA, triggered an inflammatory response marked by the upregulation of IL-6 mRNA (11-fold; P < 0.01) and a decrease in IκBα (32%; P < 0.05). Furthermore, whereas PA and LA did not differently modulate the levels of mitochondrial electron transport chain complex proteins, PA induced mitochondrial fragmentation (37%; P < 0.001), decreased MFN-2 (38%; P < 0.05), and caused a drop in mitochondrial membrane potential (11%; P < 0.01) compared to control, with this effect being absent in LA-treated cells. Thus, LA, as opposed to PA, did not trigger pathogenetic mechanisms proposed to be linked with insulin resistance and therefore represents a healthier saturated fatty acid choice to potentially preserve skeletal muscle metabolic health.


2021 ◽  
Author(s):  
Zhuang Ma ◽  
Zuheng Liu ◽  
Yuting Xue ◽  
Hao Zhang ◽  
Wenjun Xiong ◽  
...  

Abstract Background: Both mitochondrial quality control and energy metabolism are critical in maintaining the physiological function of cardiomyocytes. Previous studies indicated that PGC-1α is a transcription co-activator in promoting mitochondrial energy metabolism which would be beneficial for cardiomyocytes. However, PGC-1α overexpression in heart tissues could also result in the development of cardiomyopathy. This discrepancy in vivo and in vitro might be due to neglecting the elimination of damaged mitochondrial. Thus, an integration strategy of mitochondrial biogenesis and mitophagy might be beneficial.Methods: We studied the function of PINK1 in mitophagy in isoproterenol (Iso)-induced cardiomyocyte injury. Adenovirus was used to provoke an overexpression of the PINK1/Mfn2 protein. Mitochondrial morphology was examined via electron microscopy and confocal microscopy. Cardiomyocytes injury were measured by mitochondrial membrane potential (MMP), reactive oxygen species (ROS) and apoptosis. Metformin was used to increase mitochondrial biogenesis, the level of which was detected via immunoblotting. Additionally, mitochondrial respiratory function was measured by ATP production and oxygen consumption rate (OCR). Results: Cardiomyocytes treated with Iso had high levels of PINK1 and low levels of Mfn2 in a time-dependent manner. PINK1 overexpression promoted mitophagy, alleviated Iso-induced reduction in MMP, reduced ROS production and the apoptotic rate. In addition to increasing mitophagy, metformin could promote mitochondrial biogenensis and the overexpression of Mfn2 induce mitochondrial fusion. Moreover, metformin treatment and PINK1/Mfn2 overexpression reduced the mitochondrial dysfunction by inhibiting the generation of ROS, and leading to an increase in both ATP production and mitochondrial membrane potential in Iso-induced cardiomyocytes injury. Conclusion: Our findings indicate that a combination strategy may help ameliorate myocardial injury through mitophagy and mitochondrial biogenesis.


1992 ◽  
Vol 281 (3) ◽  
pp. 871-878 ◽  
Author(s):  
E Chacon ◽  
R Ulrich ◽  
D Acosta

The objective of the present study was to investigate the role of mitochondrial Ca2+ in doxorubicin-induced cell injury. The effect of doxorubicin on cultured cells was investigated by digitized fluorescence imaging. The Ca2+ sensitive fluorescent dye fura-2 was used to estimate cytosolic, mitochondrial and total cellular Ca2+. Rhodamine 123 was used to estimate the mitochondrial membrane potential, and cellular ATP was determined by h.p.l.c. The data showed that doxorubicin induced greater-than-2-fold increases in mitochondrial Ca2+ before changes in cytosolic Ca2+ could be detected. An increase in mitochondrial Ca2+ paralleled the observed dissipation in mitochondrial membrane potential. Cellular ATP levels appeared to decrease as a result of mitochondrial dysfunction, which in turn produced greater-than-2-fold increases in cytosolic Ca2+. The data suggest that doxorubicin-induced alterations in mitochondrial Ca2+ homoeostasis are associated with a dissipation in energy conservation, which may result in cell injury.


2021 ◽  
Vol 26 (1) ◽  
Author(s):  
Yanning Huang ◽  
Qiaolin Wen ◽  
Jinfeng Huang ◽  
Man Luo ◽  
Yousheng Xiao ◽  
...  

Abstract Background Manganese overexposure can induce neurotoxicity, lead to manganism and result in clinical manifestations similar to those of parkinsonism. However, the underlying molecular mechanism is still unclear. This study demonstrated that MnCl2 induces mitophagy and leads to neurotoxicity by promoting BNIP3-mediated reactive oxygen species (ROS) generation. Methods Human neuroblastoma SH-SY5Y cells were used throughout our experiments. Cell viability was detected by cell proliferation/toxicity test kits. Mitochondrial membrane potential was measured by flow cytometry. ROS generation was detected using a microplate reader. Protein levels were evaluated by Western blot. Transmission electron microscopy was used to evaluate mitochondrial morphology. Co-immunoprecipitation was used to verify the interaction between BNIP3 and LC3. Results MnCl2 led to loss of mitochondrial membrane potential and apoptosis of SH-SY5Y cells by enhancing expression of BNIP3 and conversion of LC3-I to LC3-II. Moreover, MnCl2 reduced expression of the mitochondrial marker protein TOMM20 and promoted interaction between BNIP3 and LC3. The results also indicated that a decrease in BNIP3 expression reduced the mitochondrial membrane potential loss, attenuated apoptosis and reduced mitochondrial autophagosome formation in SH-SY5Y cells after MnCl2 treatment. Finally, we found that manganese-induced ROS generation could be reversed by the antioxidant N-acetyl cysteine (NAC) or silencing BNIP3 expression. Conclusions BNIP3 mediates MnCl2-induced mitophagy and neurotoxicity in dopaminergic SH-SY5Y cells through ROS. Thus, BNIP3 contributes to manganese-induced neurotoxicity by functioning as a mitophagy receptor protein.


Cells ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 3271
Author(s):  
Ghulam Mohammad ◽  
Renu A. Kowluru

Retinal mitochondria are damaged in diabetes-accelerating apoptosis of capillary cells, and ultimately, leading to degenerative capillaries. Diabetes also upregulates many long noncoding RNAs (LncRNAs), including LncMALAT1 and LncNEAT1. These RNAs have more than 200 nucleotides and no open reading frame for translation. LncMALAT1 and LncNEAT1 are encoded by nuclear genome, but nuclear-encoded LncRNAs can also translocate in the mitochondria. Our aim was to investigate the role of LncMALAT1 and LncNEAT1 in mitochondrial homeostasis. Using human retinal endothelial cells, the effect of high glucose on LncMALAT1 and LncNEAT1 mitochondrial localization was examined by RNA fluorescence in situ hybridization. The role of these LncRNAs in mitochondrial membrane potential (by JC-I staining), mtDNA integrity (by extended length PCR) and in protective mtDNA nucleoids (by SYBR green staining) was examined in MALAT1- or NEAT1-siRNA transfected cells. High glucose increased LncMALAT1 and LncNEAT1 mitochondrial expression, and MALAT1-siRNA or NEAT1-siRNA ameliorated glucose-induced damage to mitochondrial membrane potential and mtDNA, and prevented decrease in mtDNA nucleoids. Thus, increased mitochondrial translocation of LncMALAT1 or LncNEAT1 in a hyperglycemic milieu plays a major role in damaging the mitochondrial structural and genomic integrity. Regulation of these LncRNAs can protect mitochondrial homeostasis, and ameliorate formation of degenerative capillaries in diabetic retinopathy.


2016 ◽  
Vol 311 (6) ◽  
pp. C1005-C1013 ◽  
Author(s):  
Julieta Diaz-Juarez ◽  
Jorge Suarez ◽  
Federico Cividini ◽  
Brian T. Scott ◽  
Tanja Diemer ◽  
...  

Diabetic cardiomyopathy is associated with metabolic changes, including decreased glucose oxidation (Gox) and increased fatty acid oxidation (FAox), which result in cardiac energetic deficiency. Diabetic hyperglycemia is a pathophysiological mechanism that triggers multiple maladaptive phenomena. The mitochondrial Ca2+ uniporter (MCU) is the channel responsible for Ca2+ uptake in mitochondria, and free mitochondrial Ca2+ concentration ([Ca2+]m) regulates mitochondrial metabolism. Experiments with cardiac myocytes (CM) exposed to simulated hyperglycemia revealed reduced [Ca2+]m and MCU protein levels. Therefore, we investigated whether returning [Ca2+]m to normal levels in CM by MCU expression could lead to normalization of Gox and FAox with no detrimental effects. Mouse neonatal CM were exposed for 72 h to normal glucose [5.5 mM glucose + 19.5 mM mannitol (NG)], high glucose [25 mM glucose (HG)], or HG + adenoviral MCU expression. Gox and FAox, [Ca2+]m, MCU levels, pyruvate dehydrogenase (PDH) activity, oxidative stress, mitochondrial membrane potential, and apoptosis were assessed. [Ca2+]m and MCU protein levels were reduced after 72 h of HG. Gox was decreased and FAox was increased in HG, PDH activity was decreased, phosphorylated PDH levels were increased, and mitochondrial membrane potential was reduced. MCU expression returned these parameters toward NG levels. Moreover, increased oxidative stress and apoptosis were reduced in HG by MCU expression. We also observed reduced MCU protein levels and [Ca2+]m in hearts from type 1 diabetic mice. Thus we conclude that HG-induced metabolic alterations can be reversed by restoration of MCU levels, resulting in return of [Ca2+]m to normal levels.


Sign in / Sign up

Export Citation Format

Share Document