scholarly journals LncRNA-FKBP1C regulates muscle fiber type switching by affecting the stability of MYH1B

2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Jia-ao Yu ◽  
Zhijun Wang ◽  
Xin Yang ◽  
Manting Ma ◽  
Zhenhui Li ◽  
...  

AbstractLong non-coding RNAs (lncRNAs) are well-known to participate in a variety of important regulatory processes in myogenesis. In our previous RNA-seq study (accession number GSE58755), we found that lncRNA-FKBP1C was differentially expressed between White Recessive Rock (WRR) and Xinghua (XH) chicken. Here, we have further demonstrated that lncRNA-FKBP1C interacted directly with MYH1B by biotinylated RNA pull-down assay and RNA immunoprecipitation (RIP). Protein stability and degradation experiments identified that lncRNA-FKBP1C enhanced the protein stability of MYH1B. Overexpression of lncRNA-FKBP1C inhibited myoblasts proliferation, promoted myoblasts differentiation, and participated in the formation of skeletal muscle fibers. LncRNA-FKBP1C could downregulate the fast muscle genes and upregulate slow muscle genes. Conversely, its interference promoted cell proliferation, repressed cell differentiation, and drove the transformation of slow-twitch muscle fibers to fast-twitch muscle fibers. Similar results were observed after knockdown of the MYH1B gene, but the difference was that the MYH1B gene had no effects on fast muscle fibers. In short, these data demonstrate that lncRNA-FKBP1C could bound with MYH1B and enhance its protein stability, thus affecting proliferation, differentiation of myoblasts and conversion of skeletal muscle fiber types.

1983 ◽  
Vol 245 (2) ◽  
pp. H265-H275 ◽  
Author(s):  
B. G. Mackie ◽  
R. L. Terjung

Blood flow to fast-twitch red (FTR), fast-twitch white (FTW), and slow-twitch red (STR) muscle fiber sections of the gastrocnemius-plantaris-soleus muscle group was determined using 15 +/- 3-microns microspheres during in situ stimulation in pentobarbital-anesthetized rats. Steady-state blood flows were assessed during the 10th min of contraction using twitch (0.1, 0.5, 1, 3, and 5 Hz) and tetanic (7.5, 15, 30, 60, and 120/min) stimulation conditions. In addition, an earlier blood flow determination was begun at 3 min (twitch series) or at 30 s (tetanic series) of stimulation. Blood flow was highest in the FTR (220-240 ml X min-1 X 100 g-1), intermediate in the STR (140), and lowest in the FTW (70-80) section during tetanic contraction conditions estimated to coincide with the peak aerobic function of each fiber type. These blood flows are fairly proportional to the differences in oxidative capacity among fiber types. Further, their absolute values are similar to those predicted from the relationship between blood flow and oxidative capacity found by others for dog and cat muscles. During low-frequency contraction conditions, initial blood flow to the FTR and STR sections were excessively high and not dependent on contraction frequency. However, blood flows subsequently decreased to values in keeping with the relative energy demands. In contrast, FTW muscle did not exhibit this time-dependent relative hyperemia. Thus, besides the obvious quantitative differences between skeletal muscle fiber types, there are qualitative differences in blood flow response during contractions. Our findings establish that, based on fiber type composition, a heterogeneity in blood flow distribution can occur within a whole muscle during contraction.


1997 ◽  
Vol 22 (4) ◽  
pp. 307-327 ◽  
Author(s):  
Robert S. Staron

This brief review attempts to summarize a number of studies on the delineation, development, and distribution of human skeletal muscle fiber types. A total of seven fiber types can be identified in human limb and trunk musculature based on the pH stability/ability of myofibrillar adenosine triphosphatase (mATPase). For most human muscles, mATPase-based fiber types correlate with the myosin heavy chain (MHC) content. Thus, each histochemically identified fiber has a specific MHC profile. Although this categorization is useful, it must be realized that muscle fibers are highly adaptable and that innumerable fiber type transients exist. Also, some muscles contain specific MHC isoforms and/or combinations that do not permit routine mATPase-based fiber typing. Although the major populations of fast and slow are, for the most part, established shortly after birth, subtle alterations take place throughout life. These changes appear to relate to alterations in activity and/or hormonal levels, and perhaps later in life, total fiber number. Because large variations in fiber type distribution can be found within a muscle and between individuals, interpretation of data gathered from human muscle is often difficult. Key words: aging, myosin heavy chains, myogenesis, myofibrillar adenosine triphosphate


2009 ◽  
Vol 106 (3) ◽  
pp. 959-965 ◽  
Author(s):  
Barbara Norman ◽  
Mona Esbjörnsson ◽  
Håkan Rundqvist ◽  
Ted Österlund ◽  
Ferdinand von Walden ◽  
...  

α-Actinins are structural proteins of the Z-line. Human skeletal muscle expresses two α-actinin isoforms, α-actinin-2 and α-actinin-3, encoded by their respective genes ACTN2 and ACTN3. ACTN2 is expressed in all muscle fiber types, while only type II fibers, and particularly the type IIb fibers, express ACTN3. ACTN3 (R577X) polymorphism results in loss of α-actinin-3 and has been suggested to influence skeletal muscle function. The X allele is less common in elite sprint and power athletes than in the general population and has been suggested to be detrimental for performance requiring high power. The present study investigated the association of ACTN3 genotype with muscle power during 30-s Wingate cycling in 120 moderately to well-trained men and women and with knee extensor strength and fatigability in a subset of 21 men performing isokinetic exercise. Muscle biopsies were obtained from the vastus lateralis muscle to determine fiber-type composition and ACTN2 and ACTN3 mRNA levels. Peak and mean power and the torque-velocity relationship and fatigability output showed no difference across ACTN3 genotypes. Thus this study suggests that R577X polymorphism in ACTN3 is not associated with differences in power output, fatigability, or force-velocity characteristics in moderately trained individuals. However, repeated exercise bouts prompted an increase in peak torque in RR but not in XX genotypes, suggesting that ACTN3 genotype may modulate responsiveness to training. Our data further suggest that α-actinins do not play a significant role in determining muscle fiber-type composition. Finally, we show that ACTN2 expression is affected by the content of α-actinin-3, which implies that α-actinin-2 may compensate for the lack of α-actinin-3 and hence counteract the phenotypic consequences of the deficiency.


1990 ◽  
Vol 69 (4) ◽  
pp. 1208-1211 ◽  
Author(s):  
J. J. Greer ◽  
T. P. Martin

The electromyogram (EMG) activity and histochemical properties of intercostal muscles in the anesthetized cat were studied. The parasternal muscles were consistently active during inspiration. The external intercostals in the rostral spaces and the ventral portions of the midthoracic spaces were also recruited during inspiration. The remaining external intercostals were typically silent, regardless of the level of respiratory drive. The internal intercostal muscles located in the caudal spaces were occasionally recruited during expiration. There was a clear correlation between recruitment patterns of the intercostals and the histochemically defined fiber type properties of the muscles. Intercostal muscles that were routinely recruited during inspiration had a significantly higher proportion of slow-oxidative muscle fibers.


Development ◽  
1996 ◽  
Vol 122 (11) ◽  
pp. 3371-3380 ◽  
Author(s):  
S.H. Devoto ◽  
E. Melancon ◽  
J.S. Eisen ◽  
M. Westerfield

We have examined the development of specific muscle fiber types in zebrafish axial muscle by labeling myogenic precursor cells with vital fluorescent dyes and following their subsequent differentiation and fate. Two populations of muscle precursors, medial and lateral, can be distinguished in the segmental plate by position, morphology and gene expression. The medial cells, known as adaxial cells, are large, cuboidal cells adjacent to the notochord that express myoD. Surprisingly, after somite formation, they migrate radially away from the notochord, becoming a superficial layer of muscle cells. A subset of adaxial cells develop into engrailed-expressing muscle pioneers. Adaxial cells differentiate into slow muscle fibers of the adult fish. We have named the lateral population of cells in the segmental plate, lateral presomitic cells. They are smaller, more irregularly shaped and separated from the notochord by adaxial cells; they do not express myoD until after somite formation. Lateral presomitic cells remain deep in the myotome and they differentiate into fast muscle fibers. Thus, slow and fast muscle fiber types in zebrafish axial muscle arise from distinct populations of cells in the segmental plate that develop in different cellular environments and display distinct behaviors.


1988 ◽  
Vol 255 (6) ◽  
pp. G772-G778 ◽  
Author(s):  
J. Krier ◽  
T. Adams ◽  
R. A. Meyer

The contractile properties, morphology, and the distribution of striated muscle fiber types of the external and sphincter (EAS) were determined using axial force measurements, fiber size cross-sectional area measurements, and histochemistry. Electrical stimulation of motor axons in pudendal nerve at supramaximal intensities (10 V, 0.05 ms duration) elicited twitch contractions of EAS. The time to peak force after a single pulse ranged from 37 to 42 ms. The time for relaxation to half-maximal twitch force ranged from 20 to 29 ms. Repetitive stimulation of motor axons (0.1-3.0 Hz) produced potentiation and fatigue of single twitch contractile force, suggesting that the EAS of the cat is comprised predominantly of fast-twitch muscle fibers. Confirmation of skeletal muscle fiber types was determined by histochemistry. Frozen serial cross sections of EAS were incubated to demonstrate succinic dehydrogenase (SDH) and myosin adenosine triphosphatase after alkaline preincubation (pH 10.4). Based on these reactions, muscle fibers were classified as fast glycolytic (FG) (high ATPase, low SDH), fast oxidative-glycolytic (FOG) (high ATPase, high SDH), and slow oxidative (SO) (low ATPase, high SDH). The mean percentage +/- SE of each histochemical type was the following: FG, 73.5 +/- 3.9; FOG, 22.8 +/- 3.7; and SO, 3.7 +/- 0.6. These results indicate that the predominant fiber type for the EAS is FG. The EAS of the cat is considered a nominally fast-twitch muscle.


2019 ◽  
Vol 2 (2) ◽  
pp. 67-68
Author(s):  
Anusha Sivakumar ◽  
Patience Coleman ◽  
Bimol C Roy ◽  
Heather L Bruce

The muscle fibers that have been examined in the study were affected by three different controlled factors: steroids, ractopamine and residual feed intake (RFI). By examining the effects of the controlled factors on cattle’s muscle fibers, it can be determined if they affect different meat properties, such as meat toughness, collagen solubility and muscle fiber quality. The research had been done specifically with m. semimembranosus (SM) of crossbred steers. Although some may be concerned with the health effects of steroids and other materials, no negative effects to the health of the cattle were observed after the use of steroids. This is because the hormones being introduced into the cattle’s body already exist in the animal. In addition, the same concept applies to humans who consume the meat, preventing harm the people who consume it. For this study, 48 crossbred angus steers were used, 12 for each of the different treatment groups. The control group consisted of no steroids and no ractopamine. The second group was not treated with steroid but with ractopamine. The third group was treated with steroids but no ractopamine. Finally, the fourth group was treated with both, the steroids and the ractopamine. For each SM muscle, 1-inch thick steaks were cut and from those steaks, 1cm3 cubes were cut. These cubes were frozen in dry ice acetone until they are ready to be sectioned. Cubes are placed in the cryostat and sliced into serial sections of 10µm. These serial sections are then mounted onto dry slide glass and stored in a freezer at -80ºC until they are to be stained. The staining process helps to identify the different types of muscle fibers in the samples. From the muscle fiber types, the average sizes of each muscle fiber is calculated to identify inconsistencies among the different treatment groups. Conclusions will be drawn based on the inconsistencies found (if any).


2011 ◽  
Vol 301 (4) ◽  
pp. R916-R925 ◽  
Author(s):  
Krystyna Banas ◽  
Charlene Clow ◽  
Bernard J. Jasmin ◽  
Jean-Marc Renaud

It has long been suggested that in skeletal muscle, the ATP-sensitive K+ channel (KATP) channel is important in protecting energy levels and that abolishing its activity causes fiber damage and severely impairs function. The responses to a lack of KATP channel activity vary between muscles and fibers, with the severity of the impairment being the highest in the most glycolytic muscle fibers. Furthermore, glycolytic muscle fibers are also expected to face metabolic stress more often than oxidative ones. The objective of this study was to determine whether the t-tubular KATP channel content differs between muscles and fiber types. KATP channel content was estimated using a semiquantitative immunofluorescence approach by staining cross sections from soleus, extensor digitorum longus (EDL), and flexor digitorum brevis (FDB) muscles with anti-Kir6.2 antibody. Fiber types were determined using serial cross sections stained with specific antimyosin I, IIA, IIB, and IIX antibodies. Changes in Kir6.2 content were compared with changes in CaV1.1 content, as this Ca2+ channel is responsible for triggering Ca2+ release from sarcoplasmic reticulum. The Kir6.2 content was the lowest in the oxidative soleus and the highest in the glycolytic EDL and FDB. At the individual fiber level, the Kir6.2 content within a muscle was in the order of type IIB > IIX > IIA ≥ I. Interestingly, the Kir6.2 content for a given fiber type was significantly different between soleus, EDL, and FDB, and highest in FDB. Correlations of relative fluorescence intensities from the Kir6.2 and CaV1.1 antibodies were significant for all three muscles. However, the variability in content between the three muscles or individual fibers was much greater for Kir6.2 than for CaV1.1. It is suggested that the t-tubular KATP channel content increases as the glycolytic capacity increases and as the oxidative capacity decreases and that the expression of KATP channels may be linked to how often muscles/fibers face metabolic stress.


Sign in / Sign up

Export Citation Format

Share Document