Interruption of the rat circadian clock by short light-dark cycles

2003 ◽  
Vol 284 (5) ◽  
pp. R1255-R1259 ◽  
Author(s):  
Setsuo Usui ◽  
Terue Okazaki ◽  
Yoshiko Honda

Ninety male Sprague-Dawley rats were exposed to 1:1-h light-dark (LD1:1) cycles for 50–90 days, and then they were released into constant darkness (DD). During LD1:1 cycles, behavioral rhythms were gradually disintegrated, and circadian rhythms of locomotor activity, drinking, and urine 6-sulfatoxymelatonin excretion were eventually abolished. After release into DD, 44 (49%) rats showed arrhythmic behavior for >10 days. Seven (8%) animals that remained arrhythmic for >50 days in DD were exposed to brief light pulses or 12:12-h light-dark cycles, and then they restored their circadian rhythms. These results indicate that the circadian clock was stopped, at least functionally, by LD1:1 cycles and was restarted by subsequent light stimulation.

2010 ◽  
Vol 298 (3) ◽  
pp. R627-R634 ◽  
Author(s):  
Ana Vukolic ◽  
Vladan Antic ◽  
Bruce N. Van Vliet ◽  
Zhihong Yang ◽  
Urs Albrecht ◽  
...  

Alterations in the circadian blood pressure pattern are frequently observed in hypertension and lead to increased cardiovascular morbidity. However, there are no studies that have investigated a possible implication of the Period2 gene, a key component of the molecular circadian clock, on the circadian rhythms of blood pressure and heart rate. To address this question, we monitored blood pressure, heart rate, and locomotor activity 24 h a day by telemetry in mice carrying a mutation in the Period2 gene and in wild-type control mice. Under a standard 12:12-h light-dark cycle, mutant mice showed a mild cardiovascular phenotype with an elevated 24-h heart rate, a decreased 24-h diastolic blood pressure, and an attenuation of the dark-light difference in blood pressure and heart rate. Locomotor activity was similar in both groups and did not appear to explain the observed hemodynamic differences. When mice were placed under constant darkness during eight consecutive days, wild-type mice maintained 24-h rhythms, whereas there was an apparent progressive loss of 24-h rhythm of blood pressure, heart rate, and locomotor activity in mutant mice. However, a chi square periodogram revealed that circadian rhythms were preserved under complete absence of any light cue, but with shorter periods by ∼40 min, leading to a cumulative phase shift toward earlier times of ∼5 h and 20 min by the end of the 8th day. When heart rate, mean arterial pressure, and activity were recalculated according to the endogenous circadian periods of each individual mouse, the amplitudes of the circadian rhythms (“subjective night”-“subjective day” differences) were maintained for all variables studied. Our data show that mutation of the Period2 gene results in an attenuated dipping of blood pressure and heart rate during both light-dark cycles and constant darkness, and in shorter circadian periods during constant darkness.


2012 ◽  
Vol 303 (8) ◽  
pp. R850-R860 ◽  
Author(s):  
Miriam Goebel-Stengel ◽  
Andreas Stengel ◽  
Lixin Wang ◽  
Gordon Ohning ◽  
Yvette Taché ◽  
...  

Various molecular forms of CCK reduce food intake in rats. Although CCK-8 is the most studied form, we reported that CCK-58 is the only detectable endocrine peptide form in rats. We investigated the dark-phase rat chow intake pattern following injection of CCK-8 and CCK-58. Ad libitum-fed male Sprague-Dawley rats were intraperitoneally injected with CCK-8, CCK-58 (0.6, 1.8, and 5.2 nmol/kg), or vehicle. Food intake pattern was assessed during the dark phase using an automated weighing system that allowed continuous undisturbed monitoring of physiological eating behavior. Both CCK-8 and CCK-58 dose dependently reduced 1-h, dark-phase food intake, with an equimolar dose of 1.8 nmol being similarly effective (−49% and −44%). CCK-58 increased the latency to the first meal, whereas CCK-8 did not. The intermeal interval was reduced after CCK-8 (1.8 nmol/kg, −41%) but not after CCK-58. At this dose, CCK-8 increased the satiety ratio by 80% and CCK-58 by 160%, respectively, compared with vehicle. When behavior was assessed manually, CCK-8 reduced locomotor activity (−31%), whereas grooming behavior was increased (+59%). CCK-58 affected neither grooming nor locomotor activity. In conclusion, reduction of food intake by CCK-8 and CCK-58 is achieved by differential modulation of food intake microstructure and behavior. These data highlight the importance of studying the molecular forms of peptides that exist in vivo in tissue and circulation of the animal being studied.


1991 ◽  
Vol 260 (4) ◽  
pp. G610-G614 ◽  
Author(s):  
K. R. Larsen ◽  
J. G. Moore ◽  
M. T. Dayton

One model of gastric ulcerogenesis implicates a disruption of complementary circadian rhythms between protective and destructive factors. The purpose of this study was to compare circadian rhythms in gastric production of H+ and HCO3- in fasted rats. Sprague-Dawley rats were acclimatized in sound-attenuating, light-proof chambers for 3 wk on a 12:12-h light-dark schedule. Eighteen-hour fasted rats were studied at each of eight sampling times. After anesthesia, the stomachs were cannulated and filled with test solution. Thirty-minute gastric samples were titrated for H+ or assayed for HCO3-. Cosinor analysis of the data showed significant (P less than 0.05) circadian rhythms for both H+ and HCO3-. Peak times were 22:45 HALO (hours after lights on) (4:45 A.M.) for H+ and 05:41 HALO (11:41 A.M.) for HCO3-. These data demonstrate that H+ and HCO3- secretion in the fasting rat gastric lumen follow circadian rhythms with different peak times. Theoretically, this may result in circadian rhythmicity of relative mucosal vulnerability to injury.


1999 ◽  
Vol 276 (4) ◽  
pp. R1063-R1070 ◽  
Author(s):  
Etienne Challet ◽  
Susan Losee-Olson ◽  
Fred W. Turek

To test whether circadian responses to light are modulated by decreased glucose availability, we analyzed photic phase resetting of the circadian rhythm of locomotor activity in mice exposed to four metabolic challenges: 1) blockade of glucose utilization induced by 2-deoxy-d-glucose (2-DG), 2) fasting (food was removed for 30 h), 3) insulin administration, and 4) insulin treatment after fasting. In mice housed in constant darkness, light pulses applied during early subjective night induced phase delays of the rhythm of locomotor activity, whereas light pulses applied during late subjective night caused phase advances. There was an overall reduction of light-induced phase shifts, with a more pronounced effect for delays, in mice pretreated with 500 mg/kg ip 2-DG compared with mice injected with saline. Administration of glucose with 2-DG prevented the reduction of light-induced phase delays. Furthermore, phase delays were reduced in fed mice pretreated with 5 IU/kg sc insulin and in fasted mice injected with saline or insulin compared with control fed mice. These results show that circadian responses to light are reduced when brain glucose availability is decreased, suggesting a metabolic modulation of light-induced phase shifts.


2011 ◽  
Vol 99 (4) ◽  
pp. 634-638 ◽  
Author(s):  
Wei-li Chang ◽  
Michelle R. Breier ◽  
Alex Yang ◽  
Neal R. Swerdlow

2019 ◽  
Author(s):  
Anna Geo ◽  
Himani Pathak ◽  
Anamika Elizabeth Kujur ◽  
Sreesha R Sudhakar ◽  
Nisha N Kannan

AbstractThe circadian clock regulates various behavioral, metabolic and physiological processes to occur at the most suitable time of the day. Internal energy stores and nutrient availability modulates the most apparent circadian clock mediated locmotor activity rhythm in Drosophila. Although previous studies unraveled the role of circadian clock in metabolism and activity rest rhythm, the precise pathway through which the circadian neuropeptidergic signaling regulates internal energy storage and the starvation-mediated increase in activity resembling foraging remains largely unclear. This study was aimed to elucidate the role of circadian neuropeptide, short neuropeptide F (sNPF) in triglyceride metabolism, starvation resistance and starvation-mediated increased locomotor activity in Drosophila. The results showed that snpf transcripts exhibits significant rhythmicity in wild type flies under 12:12 hour light-dark cycles (LD) and constant darkness (DD) whereas snpf transcript level in period null flies did not exhibit any significant rhythmicity under LD. Knockdown of sNPF in circadian clock neurons reduced the triglyceride level, starvation resistance and increased the starvation-mediated hyperactivity response after 24 hour of starvation. Further studies showed that knock down of sNPF receptors (sNPFR) expressed in insulin producing cells (IPC) increased the starvation resistance and reduced starvation-induced hyperactivity response after 24 hour of starvation. Collectively, our results suggest that transcriptional oscillation of snpf mRNA is endogenously controlled by the circadian clock and elucidate the role of sNPF in modulating locomotor activity in accordance with the nutrient availability in Drosophila.


2000 ◽  
Vol 279 (6) ◽  
pp. R2121-R2131 ◽  
Author(s):  
Cristiano Bertolucci ◽  
Valeria Anna Sovrano ◽  
Maria Chiara Magnone ◽  
Augusto Foà

To establish whether the suprachiasmatic nuclei (SCN) of the Ruin lizard ( Podarcis sicula) play a role in entrainment of circadian rhythms to light, we examined the effects of exposure to 24-h light-dark (LD) cycles on the locomotor behavior of lizards with SCN lesions. Lizards became arrhythmic in response to complete SCN lesion under constant temperature and constant darkness (DD), and they remained arrhythmic after exposure to LD cycles. Remnants of SCN tissue in other lesioned lizards were sufficient to warrant entrainment to LD cycles. Hence, the SCN of Ruin lizards are essential both to maintain locomotor rhythmicity and to mediate entrainment of these rhythms to light. We also asked whether light causes expression of Fos-like immunoreactivity (Fos-LI) in the SCN. Under LD cycles, the SCN express a daily rhythm in Fos-LI. Because Fos-LI is undetectable in DD, the rhythm seen in LD cycles is caused by light. We further showed that unilateral SCN lesions in DD induce dramatic period changes. Altogether, the present data support the existence of a strong functional similarity between the SCN of lizards and the SCN of mammals.


Sign in / Sign up

Export Citation Format

Share Document