Contraction-induced increases in Na+-K+-ATPase mRNA levels in human skeletal muscle are not amplified by activation of additional muscle mass

2005 ◽  
Vol 289 (1) ◽  
pp. R84-R91 ◽  
Author(s):  
Nikolai Nordsborg ◽  
Martin Thomassen ◽  
Carsten Lundby ◽  
Henriette Pilegaard ◽  
Jens Bangsbo

The present study tested the hypothesis that exercise with a large compared with a small active muscle mass results in a higher contraction-induced increase in Na+-K+-ATPase mRNA expression due to greater hormonal responses. Furthermore, the relative abundance of Na+-K+-ATPase subunit α1, α2, α3, α4, β1, β2, and β3 mRNA in human skeletal muscle was investigated. On two occasions, eight subjects performed one-legged knee extension exercise (L) or combined one-legged knee extension and bilateral arm cranking (AL) for 5.00, 4.25, 3.50, 2.75, and 2.00 min separated by 3 min of rest. Leg exercise power output was the same in AL and L, but heart rate at the end of each exercise interval was higher in AL compared with L. One minute after exercise, arm venous blood lactate was higher in AL than in L. A higher level of blood epinephrine and norepinephrine was evident 3 min after exercise in AL compared with L. Nevertheless, none of the exercise-induced increases in α1, α2, β1, and β3 mRNA expression levels were higher in AL compared with L. The most abundant Na+-K+-ATPase subunit at the mRNA level was β1, which was expressed 3.4 times than α2. Expression of α1, β2, and β3 was less than 5% of the α2 expression, and no reliable detection of α3 and α4 was possible. In conclusion, activation of additional muscle mass does not result in a higher exercise-induced increase in Na+-K+-ATPase subunit-specific mRNA.

1999 ◽  
Vol 276 (2) ◽  
pp. H679-H685 ◽  
Author(s):  
Thomas Gustafsson ◽  
Adrian Puntschart ◽  
Lennart Kaijser ◽  
Eva Jansson ◽  
Carl Johan Sundberg

mRNA expression of vascular endothelial growth factor (VEGF), fibroblast growth factor-2 (FGF-2), and hypoxia-inducible factor (HIF) subunits HIF-1α and HIF-1β in human skeletal muscle was studied during endurance exercise at different degrees of oxygen delivery. Muscle biopsies were taken before and after 45 min of one-legged knee-extension exercise performed under conditions of nonrestricted or restricted blood flow (∼15–20% lower) at the same absolute workload. Exercise increased VEGF mRNA expression by 178% and HIF-1β by 340%, but not HIF-1α and FGF-2. No significant differences between the restricted and nonrestricted groups were observed. The exercise-induced increase in VEGF mRNA was correlated to the exercise changes in HIF-1α and HIF-1β mRNA. The changes in VEGF, HIF-1α, and HIF-1β mRNAs were correlated to the exercise-induced increase in femoral venous plasma lactate concentration. It is concluded that 1) VEGF but not FGF-2 gene expression is upregulated in human skeletal muscle by a single bout of dynamic exercise and that there is a graded response in VEGF mRNA expression related to the metabolic stress and 2) the increase in VEGF mRNA expression correlates to the changes in both HIF-1α and HIF-1β mRNA.


2009 ◽  
Vol 106 (4) ◽  
pp. 1419-1424 ◽  
Author(s):  
Maarit Lehti ◽  
Riikka Kivelä ◽  
Paavo Komi ◽  
Jyrki Komulainen ◽  
Heikki Kainulainen ◽  
...  

Eccentric exercise induced by electrostimulation increases mRNA expression of titin-complex proteins in rodent skeletal muscle. In this study, mRNA expression of titin, muscle LIM protein (MLP), cardiac ankyrin repeat protein (CARP), ankyrin repeat domain protein 2 (Ankrd2), diabetes-related ankyrin repeat protein (DARP), and calcium-activated proteinases, calpains, were investigated in human skeletal muscle after fatiguing jumping exercise. Fatiguing jumping exercise did not change mRNA expression of titin, DARP, calpain 1, or calpain 3. MLP, Ankrd2 and calpain 2 mRNA levels were increased 2 days postexercise. CARP mRNA level was already elevated 30 min and remained elevated 2 days postexercise. Increased mRNA expression of MLP, CARP, and Ankrd2, observed for the first time in human skeletal muscle, may be part of the signaling activated by physical exercise. The rapid increase in the level of CARP mRNA nominates CARP as one of the first genes to respond to exercise. The increase in the mRNA level of calpain 2 suggests its involvement in myofiber remodeling after strenuous jumping exercise.


2004 ◽  
Vol 287 (2) ◽  
pp. R322-R327 ◽  
Author(s):  
M. H. Stanley Chan ◽  
Andrew L. Carey ◽  
Matthew J. Watt ◽  
Mark A. Febbraio

To determine the expression and induction of cytokines in human skeletal muscle during concentric contractions, eight males performed 60 min of bicycle exercise, with either a normal (Con) or reduced (Lo Gly) preexercise intramuscular glycogen content. Muscle biopsy samples were obtained before and after exercise and analyzed for glycogen and the mRNA expression of 13 cytokines. Resting muscle glycogen was higher ( P < 0.05) in Con compared with Lo Gly and was reduced ( P < 0.05) to 102 ± 32 vs. 17 ± 5 mmol U glycosyl/kg dry mass for Con and Lo Gly, respectively. We detected mRNA levels in human skeletal muscle for five cytokines, namely interleukin (IL)-1β, IL-6, IL-8, IL-15, and tumor necrosis factor-α. However, muscle contraction increased ( P < 0.05) the mRNA expression of IL-6 and IL-8 alone. In addition, the fold change for both IL-8 and IL-6 was markedly higher ( P < 0.05) in Lo Gly compared with Con. Given these results, we analyzed venous blood samples, obtained before and during exercise, for IL-6 and IL-8. Plasma IL-6 was not different at rest, and although the circulating concentration of this cytokine increased ( P < 0.05) it increased to a greater extent ( P < 0.05) throughout exercise in Lo Gly. In contrast, plasma IL-8 was not affected by exercise or treatment. These data demonstrate that cytokines are not ubiquitously expressed in skeletal muscle and that only IL-6 and IL-8 mRNA are increased during contraction of this mode and duration. Furthermore, the mRNA abundance of IL-6 and IL-8 appears to be influenced by glycogen availability in the contracting muscle.


2004 ◽  
Vol 287 (6) ◽  
pp. E1189-E1194 ◽  
Author(s):  
Christian P. Fischer ◽  
Peter Plomgaard ◽  
Anne K. Hansen ◽  
Henriette Pilegaard ◽  
Bengt Saltin ◽  
...  

Contracting skeletal muscle expresses large amounts of IL-6. Because 1) IL-6 mRNA expression in contracting skeletal muscle is enhanced by low muscle glycogen content, and 2) IL-6 increases lipolysis and oxidation of fatty acids, we hypothesized that regular exercise training, associated with increased levels of resting muscle glycogen and enhanced capacity to oxidize fatty acids, would lead to a less-pronounced increase of skeletal muscle IL-6 mRNA in response to acute exercise. Thus, before and after 10 wk of knee extensor endurance training, skeletal muscle IL-6 mRNA expression was determined in young healthy men ( n = 7) in response to 3 h of dynamic knee extensor exercise, using the same relative workload. Maximal power output, time to exhaustion during submaximal exercise, resting muscle glycogen content, and citrate synthase and 3-hydroxyacyl-CoA dehydrogenase enzyme activity were all significantly enhanced by training. IL-6 mRNA expression in resting skeletal muscle did not change in response to training. However, although absolute workload during acute exercise was 44% higher ( P < 0.05) after the training period, skeletal muscle IL-6 mRNA content increased 76-fold ( P < 0.05) in response to exercise before the training period, but only 8-fold ( P < 0.05, relative to rest and pretraining) in response to exercise after training. Furthermore, the exercise-induced increase of plasma IL-6 ( P < 0.05, pre- and posttraining) was not higher after training despite higher absolute work intensity. In conclusion, the magnitude of the exercise-induced IL-6 mRNA expression in contracting human skeletal muscle was markedly reduced by 10 wk of training.


2019 ◽  
Vol 104 (3) ◽  
pp. 407-420 ◽  
Author(s):  
Hashim Islam ◽  
Brittany A. Edgett ◽  
Jacob T. Bonafiglia ◽  
Talya Shulman ◽  
Andrew Ma ◽  
...  

2004 ◽  
Vol 287 (2) ◽  
pp. R397-R402 ◽  
Author(s):  
Lotte Jensen ◽  
Henriette Pilegaard ◽  
P. Darrell Neufer ◽  
Ylva Hellsten

The present study investigated the effect of an acute exercise bout on the mRNA response of vascular endothelial growth factor (VEGF) splice variants in untrained and trained human skeletal muscle. Seven habitually active young men performed one-legged knee-extensor exercise training at an intensity corresponding to ∼70% of the maximal workload in an incremental test five times/week for 4 wk. Biopsies were obtained from the vastus lateralis muscle of the trained and untrained leg 40 h after the last training session. The subjects then performed 3 h of two-legged knee-extensor exercise, and biopsies were obtained from both legs after 0, 2, 6, and 24 h of recovery. Real-time PCR was used to examine the expression of VEGF mRNA containing exon 1 and 2 (all VEGF isoforms), exon 6 or exon 7, and VEGF165mRNA. Acute exercise induced an increase ( P < 0.05) in total VEGF mRNA levels as well as VEGF165and VEGF splice variants containing exon 7 at 0, 2, and 6 h of recovery. The increase in VEGF mRNA was higher in the untrained than in the trained leg ( P < 0.05). The results suggest that in human skeletal muscle, acute exercise increases total VEGF mRNA, an increase that appears to be explained mainly by an increase in VEGF165mRNA. Furthermore, 4 wk of training attenuated the exercise-induced response in skeletal muscle VEGF165mRNA.


2007 ◽  
Vol 103 (4) ◽  
pp. 1395-1401 ◽  
Author(s):  
Riikka Kivelä ◽  
Heikki Kyröläinen ◽  
Harri Selänne ◽  
Paavo V. Komi ◽  
Heikki Kainulainen ◽  
...  

High mechanical loading was hypothesized to induce the expression of angiogenic and/or lymphangiogenic extracellular matrix (ECM) proteins in skeletal muscle. Eight men performed a strenuous exercise protocol, which consisted of 100 unilateral maximal drop jumps followed by submaximal jumping until exhaustion. Muscle biopsies were taken 30 min and 48 h postexercise from the vastus lateralis muscle and analyzed for the following parameters: mRNA and protein expression of ECM-associated CCN proteins [cysteine-rich angiogenic protein 61 (Cyr61)/CCN1, connective tissue growth factor (CTGF)/CCN2], and mRNA expression of vascular endothelial growth factors (VEGFs) and hypoxia-inducible factor-1α. The mRNA expression of Cyr61 and CTGF increased 30 min after the exercise (14- and 2.5-fold, respectively; P < 0.001). Cyr61 remained elevated 48 h postexercise (threefold; P < 0.05). The mRNA levels of VEGF-A, VEGF-B, VEGF-C, VEGF-D, or hypoxia-inducible factor-1α did not change significantly at either 30 min or 48 h postexercise; however, the variation between subjects increased markedly in VEGF-A and VEGF-B mRNA. Cyr61 protein levels were higher at both 30 min and 48 h after the exercise compared with the control ( P < 0.05). Cyr61 and CTGF proteins were localized to muscle fibers and the surrounding ECM by immunohistochemistry. Fast fibers stained more intensively than slow fibers. In conclusion, mechanical loading induces rapid expression of CCN proteins in human skeletal muscle. This may be one of the early mechanisms involved in skeletal muscle remodeling after exercise, since Cyr61 and CTGF regulate the expression of genes involved in angiogenesis and ECM remodeling.


2012 ◽  
Vol 26 (S1) ◽  
Author(s):  
Steven D Kunkel ◽  
Manish Suneja ◽  
Scott M Ebert ◽  
Kale S Bongers ◽  
Daniel K Fox ◽  
...  

2007 ◽  
Vol 21 (11) ◽  
pp. 2683-2694 ◽  
Author(s):  
Adam Steensberg ◽  
Charlotte Keller ◽  
Thore Hillig ◽  
Christian Frøsig ◽  
Jørgen F. P. Wojtaszewski ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document