scholarly journals Sepsis and glucocorticoids upregulate p300 and downregulate HDAC6 expression and activity in skeletal muscle

2010 ◽  
Vol 299 (2) ◽  
pp. R509-R520 ◽  
Author(s):  
Nima Alamdari ◽  
Ira J. Smith ◽  
Zaira Aversa ◽  
Per-Olof Hasselgren

Muscle wasting during sepsis is in part regulated by glucocorticoids. In recent studies, treatment of cultured muscle cells in vitro with dexamethasone upregulated expression and activity of p300, a histone acetyl transferase (HAT), and reduced expression and activity of the histone deacetylases-3 (HDAC3) and -6, changes that favor hyperacetylation. Here, we tested the hypothesis that sepsis and glucocorticoids regulate p300 and HDAC3 and -6 in skeletal muscle in vivo. Because sepsis-induced metabolic changes are particularly pronounced in white, fast-twitch skeletal muscle, most experiments were performed in extensor digitorum longus muscles. Sepsis in rats upregulated p300 mRNA and protein levels, stimulated HAT activity, and reduced HDAC6 expression and HDAC activity. The sepsis-induced changes in p300 and HDAC expression were prevented by the glucocorticoid receptor antagonist RU38486. Treatment of rats with dexamethasone increased expression of p300 and HAT activity, reduced expression of HDAC3 and -6, and inhibited HDAC activity. Finally, treatment with the HDAC inhibitor trichostatin A resulted in increased muscle proteolysis and expression of the ubiquitin ligase atrogin-1. Taken together, our results suggest for the first time that sepsis-induced muscle wasting may be regulated by glucocorticoid-dependent hyperacetylation caused by increased p300 and reduced HDAC expression and activity. The recent development of pharmacological HDAC activators may provide a novel avenue to prevent and treat muscle wasting in sepsis and other catabolic conditions.

2012 ◽  
Vol 303 (10) ◽  
pp. F1443-F1453 ◽  
Author(s):  
Chung-Hsi Hsing ◽  
Chiou-Feng Lin ◽  
Edmund So ◽  
Ding-Ping Sun ◽  
Tai-Chi Chen ◽  
...  

Bone morphogenetic protein (BMP)-7 protects sepsis-induced acute kidney injury (AKI). Dexmedetomidine (DEX), an α2-adrenoceptor (α2-AR) agonist, has anti-inflammatory effects. We investigated the protective effects of DEX on sepsis-induced AKI and the expression of BMP-7 and histone deacetylases (HDACs). In vitro , the effects of DEX or trichostatin A (TSA, an HDAC inhibitor) on TNF-α, monocyte chemotactic protein (MCP-1), BMP-7, and HDAC mRNA expression in LPS-stimulated rat renal tubular epithelial NRK52E cells, was determined using real-time PCR. In vivo, mice were intraperitoneally injected with DEX (25 μg/kg) or saline immediately and 12 h after cecal ligation and puncture (CLP) surgery. Twenty-four hours after CLP, we examined kidney injury and renal TNF-α, MCP-1, BMP-7, and HDAC expression. Survival was monitored for 120 h. LPS increased HDAC2, HDAC5, TNF-α, and MCP-1 expression, but decreased BMP-7 expression in NRK52E cells. DEX treatment decreased the HDAC2, HDAC5, TNF-α, and MCP-1 expression, but increased BMP-7 and acetyl histone H3 expression, whose effects were blocked by yohimbine, an α2-AR antagonist. With DEX treatment, the LPS-induced TNF-α expression and cell death were attenuated in scRNAi-NRK52E but not BMP-7 RNAi-NRK52E cells. In CLP mice, DEX treatment increased survival and attenuated AKI. The expression of HDAC2, HDAC5, TNF-α, and MCP-1 mRNA in the kidneys of CLP mice was increased, but BMP-7 was decreased. However, DEX treatment reduced those changes. DEX reduces sepsis-induced AKI by decreasing TNF-α and MCP-1 and increasing BMP-7, which is associated with decreasing HDAC2 and HDAC5, as well as increasing acetyl histone H3.


2002 ◽  
Vol 22 (13) ◽  
pp. 4890-4901 ◽  
Author(s):  
Sophie Deltour ◽  
Sébastien Pinte ◽  
Cateline Guerardel ◽  
Bohdan Wasylyk ◽  
Dominique Leprince

ABSTRACT HIC1 (hypermethylated in cancer) and its close relative HRG22 (HIC1-related gene on chromosome 22) encode transcriptional repressors with five C2H2 zinc fingers and an N-terminal BTB/POZ autonomous transcriptional repression domain that is unable to recruit histone deacetylases (HDACs). Alignment of the HIC1 and HRG22 proteins from various species highlighted a perfectly conserved GLDLSKK/R motif highly related to the consensus CtBP interaction motif (PXDLSXK/R), except for the replacement of the virtually invariant proline by a glycine. HIC1 strongly interacts with mCtBP1 both in vivo and in vitro through this conserved GLDLSKK motif, thus extending the CtBP consensus binding site. The BTB/POZ domain does not interact with mCtBP1, but the dimerization of HIC1 through this domain is required for the interaction with mCtBP1. When tethered to DNA by fusion with the Gal4 DNA-binding domain, the HIC1 central region represses transcription through interactions with CtBP in a trichostatin A-sensitive manner. In conclusion, our results demonstrate that HIC1 mediates transcriptional repression by both HDAC-independent and HDAC-dependent mechanisms and show that CtBP is a HIC1 corepressor that is recruited via a variant binding site.


2010 ◽  
Vol 299 (3) ◽  
pp. R823-R831 ◽  
Author(s):  
Inge Carlsen ◽  
Kaitlin E. Donohue ◽  
Anja M. Jensen ◽  
Angela L. Selzer ◽  
Jie Chen ◽  
...  

Renal medullary interstitial cells (RMICs) are subjected to osmotic, inflammatory, and mechanical stress as a result of ureteral obstruction, which may influence the expression and activity of cyclooxygenase type 2 (COX-2). Inflammatory stress strongly induces COX-2 in RMICs. To explore the direct effect of mechanical stress on the expression and activity of COX-2, cultured RMICs were subjected to varying amounts of pressure over time using a novel pressure apparatus. COX-2 mRNA and protein were induced following 60 mmHg pressure for 4 and 6 h, respectively. COX-1 mRNA and protein levels were unchanged. PGE2production in the RMICs was increased when cells were subjected to 60 mmHg pressure for 6 h and was prevented by a selective COX-2 inhibitor. Pharmacological inhibition indicating that pressure-induced COX-2 expression is dependent on p38 MAPK and biochemical knockdown experiments showed that NF-κB might be involved in the COX-2 induction by pressure. Importantly, terminal deoxyneucleotidyl transferase-mediated dUTP nick-end labeling and methylthiazoletetetrazolium assay studies showed that subjecting RMICs to 60 mmHg pressure for 6 h does not affect cell viability, apoptosis, and proliferation. To further examine the regulation of COX-2 in vivo, rats were subjected to unilateral ureteral obstruction (UUO) for 6 and 12 h. COX-2 mRNA and protein level was increased in inner medulla in response to 6- and 12-h UUO. COX-1 mRNA and protein levels were unchanged. These findings suggest that in vitro application of pressure recapitulates the effects on RMICs found after in vivo UUO. This directly implicates pressure as an important regulator of renal COX-2 expression.


2007 ◽  
Vol 32 (5) ◽  
pp. 833-839 ◽  
Author(s):  
Anders Rinnov Nielsen ◽  
Bente Klarlund Pedersen

Skeletal muscle fibers express several cytokines, including interleukin (IL)-6, IL-8, and IL-15. Solid evidence exists that muscular IL-6 and IL-8 are regulated by muscle contractions, at both the mRNA and the protein levels. IL-6 increases insulin-stimulated glucose disposal and fatty acid oxidation in humans in vivo. Both IL-6 and IL-8 are released from working skeletal muscle, but because IL-6 contributes to the systemic circulation only a small transient net release of IL-8 is found from working muscle, suggesting that IL-8 may exert its effects locally in the muscle. IL-15 is a recently discovered growth factor, which is highly expressed in skeletal muscle. Interestingly, although IL-15 has been demonstrated as having anabolic effects on skeletal muscle in vitro and in vivo, it seems to play a role in reducing adipose tissue mass, and a role for IL-15 in muscle–fat cross-talk has been hypothesized. In conclusion, muscle-derived cytokines appear to have important roles in metabolism, and exercise plays a role in orchestrating the interplay between cytokines and metabolism.


2001 ◽  
Vol 21 (7) ◽  
pp. 2259-2268 ◽  
Author(s):  
Wen-Shu Wu ◽  
Sadeq Vallian ◽  
Edward Seto ◽  
Wen-Ming Yang ◽  
Diane Edmondson ◽  
...  

ABSTRACT The growth suppressor promyelocytic leukemia protein (PML) is disrupted by the chromosomal translocation t(15;17) in acute promyelocytic leukemia (APL). PML plays a key role in multiple pathways of apoptosis and regulates cell cycle progression. The present study demonstrates that PML represses transcription by functionally and physically interacting with histone deacetylase (HDAC). Transcriptional repression mediated by PML can be inhibited by trichostatin A, a specific inhibitor of HDAC. PML coimmunoprecipitates a significant level of HDAC activity in several cell lines. PML is associated with HDAC in vivo and directly interacts with HDAC in vitro. The fusion protein PML-RARα encoded by the t(15;17) breakpoint interacts with HDAC poorly. PML interacts with all three isoforms of HDAC through specific domains, and its expression deacetylates histone H3 in vivo. Together, the results of our study show that PML modulates histone deacetylation and that loss of this function in APL alters chromatin remodeling and gene expression. This event may contribute to the development of leukemia.


2003 ◽  
Vol 77 (5) ◽  
pp. 2903-2914 ◽  
Author(s):  
Laure Weill ◽  
Elena Shestakova ◽  
Eliette Bonnefoy

ABSTRACT The induction of the beta interferon (IFN-β) gene constitutes one of the first responses of the cell to virus infection. Its regulation is achieved through an intricate combination of virus-induced binding of transcription factors and local chromatin remodeling. In this work, we demonstrate that transcription factor YY1, known to interact with histone deacetylases (HDAC) and histone acetyltransferases, has a dual activator/repressor role during the regulation of the IFN-β promoter activity. We show that YY1 specifically binds in vitro and in vivo to the murine IFN-β promoter at positions −90 and −122. Overexpression of YY1 strongly repressed the transcriptional capacity of a stably integrated IFN-β promoter fused to a chloramphenicol acetyltransferase reporter gene as well as the endogenous IFN activity of murine L929 cells via an HDAC activity. Stably integrated IFN-β promoters mutated at the −90 site were no longer repressed by YY1, could no longer be activated by trichostatin A, displayed a retarded postinduction turn off, and a reduced virus-induced activity. Introduction of a mutation at the −122 site did not affect YY1-induced repression, but promoters with this mutation displayed a reduced virus-induced activity. Stably integrated full-length promoters (from position −330 to +20) mutated at both YY1-binding sites displayed extremely reduced promoter activities. We conclude that YY1 has a dual activator/repressor role on IFN-β promoter activity depending on its binding site and time after infection.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 1375-1375
Author(s):  
Peng Ji ◽  
Francisco J Sánchez-Rivera ◽  
Harvey F. Lodish

Abstract In the last steps of differentiation mammalian erythroid cells undergo chromatin condensation and enucleation; the latter process does not occur in other vertebrates. Enucleation was critical for the evolution of mammals, as it permits an enhanced hemoglobin concentration – and thus oxygen- carrying capacity – in mammalian red blood cells. We previously reported that Rac GTPases and their downstream forming target mDia2 are required for mouse fetal erythroblast enucleation. We also found that the nucleus undergoes a gradual ~10- fold decrease in volume during erythropoiesis. Since histone deacetylases (HDACs) play important roles in chromatin condensation, we hypothesized that HDACs are involved in mammalian erythroblast enucleation. To test this hypothesis, we purified E13.5 mouse fetal TER119 negative erythroblasts and cultured them in fibronectin-coated plates. Cells were then treated with Trichostatin A (TSA), a pan-HDAC inhibitor, at different times during erythropoiesis. TSA completely blocked enucleation and kinetic studies showed this inhibitory effect occurred earlier than the step catalyzed by the Rac-mDia2 pathway. This indicates that chromatin condensation is required for the final extrusion of the nucleus. We further investigated the activity ofHDAC6 specifically, since HDAC6 is known to interact with mDia2. We found that mDia2is acetylated in vitro and in vivo and that HDAC6 interacts with and deacetylates mDia2. Treatment of purified TER119 negative mouse fetal erythroblasts with a specific HDAC6inhibitor partially blocked enucleation. We conclude that histone deacetylase activities are essential for mammalian erythroblasts to undergo enucleation and that HDACs act both on chromatin condensation and mDia2 deacetylation to promote enucleation.


2020 ◽  
Vol 21 (3) ◽  
pp. 1152 ◽  
Author(s):  
Dongfeng Li ◽  
Qin Wang ◽  
Kai Shi ◽  
Yinglin Lu ◽  
Debing Yu ◽  
...  

Testosterone (T) is essential for muscle fiber formation and growth. However, the specific mechanism by which T regulates skeletal muscle development in chicken embryos remains unclear. In this study, the role of T in myoblast proliferation both in vivo and in vitro was investigated. Results showed that the T administration significantly increased the ratio of breast muscle and leg muscle. T induced a significant increase in the cross-sectional area (CSA) and density of myofiber and the ratio of PAX7-positive cells in the skeletal muscle. Exogenous T also induced the upregulation of myogenic regulatory factors (MRFs) and cyclin-dependent kinases (CDK2)/Cyclin D1 (CCND1) and protein levels of androgen receptor (AR), p-Akt and PAX7. Furthermore, T treatment significantly promoted myoblasts cultured in vitro entering a new cell cycle and increased PAX7-positive cells. The mRNA and protein expression of AR and PAX7 were upregulated when treated with T compared to that of the control. The addition of T induced proliferation accompanied by increasing AR level as well as PI3K (Phosphoinositide 3-kinase)/Akt activation. However, T-induced proliferation was attenuated by AR, PI3K, and Akt-specific inhibitors. These data indicated that the pro-proliferative effect of T was regulated though AR in response to the activation of PI3K/Akt signalling pathway.


2007 ◽  
Vol 292 (1) ◽  
pp. R337-R334 ◽  
Author(s):  
Hongmei Yang ◽  
Wei Wei ◽  
Michael Menconi ◽  
Per-Olof Hasselgren

Muscle proteolysis during sepsis and other catabolic conditions is, at least in part, regulated by glucocorticoids. Dexamethasone-treated myotubes are a commonly used in vitro model of muscle wasting. We reported recently that treatment of cultured L6 myotubes with dexamethasone resulted in increased gene and protein expression of the nuclear cofactor p300 but it is not known whether glucocorticoids upregulate p300 histone acetyl transferase (HAT) activity in muscle and whether p300/HAT activity regulates glucocorticoid-induced muscle proteolysis. Here, we found that treatment of cultured L6 myotubes with dexamethasone resulted in increased nuclear p300/HAT activity. Treatment of myotubes with p300 siRNA or transfection of muscle cells with a plasmid expressing p300 that was mutated in its HAT activity domain blocked the dexamethasone-induced increase in protein degradation, supporting a role of p300/HAT in glucocortiocoid-induced muscle proteolysis. In addition to increased HAT activity, treatment of the myotubes with dexamethasone resulted in reduced nuclear expression and activity of histone deacetylases (HDACs) 3 and 6. When myotubes were treated with the HDAC inhibitor trichostatin A, protein degradation increased to the same degree as in dexamethasone-treated myotubes. The results suggest that glucocorticoids increase HAT and decrease HDAC activities in muscle, changes that both favor hyperacetylation. The results also provide evidence that dexamethasone-induced protein degradation in cultured myotubes is, at least in part, regulated by p300/HAT activity.


1985 ◽  
Vol 68 (6) ◽  
pp. 693-700 ◽  
Author(s):  
Finbarr C. Martin ◽  
Timothy J. Peters

1. Muscle protein breakdown in vivo has been studied by measurements of urinary 3-methylhistidine/creatinine ratios. No differences were found between control subjects and chronic alcoholics either with or without proximal muscle wasting or cirrhosis. 2. Calculation of muscle turnover rates, with the correction of Afting et al. (1981, Biochemical Journal, 200, 449-452) for non-skeletal muscle contributions of 3-methylhistidine and creatinine, showed lower values for alcoholics compared with controls. 3. Tissue activities of a neutral protease, assayed by a novel, rapid and sensitive fluorimetric method, were similar in patients and controls. The activity did not vary with severity of atrophy or the presence of cirrhosis. 4. No evidence was therefore obtained to suggest that alcoholic myopathy is due to increased muscle breakdown.


Sign in / Sign up

Export Citation Format

Share Document