Dogfish pressor response to potassium blocked by magnesium and phentolamine

1982 ◽  
Vol 242 (3) ◽  
pp. R185-R188
Author(s):  
R. G. Carroll ◽  
D. F. Opdyke ◽  
N. E. Keller

In vivo infusion of MgCl2 blocks the dogfish pressor response to K+. This action of Mg2+ was contrasted to phentolamine in in vivo and in vitro experiments. Mg2+ blocks the spontaneous release of catecholamines from dogfish chromaffin tissue but does not alter the norepinephrine-induced contraction of the isolated dogfish artery. In vivo infusion of Mg2+ causes a significant decrease in resting catecholamine levels and diminishes the catecholamine release caused by K+ challenge. Both Mg2+ and phentolamine block the pressor action of K+, Mg2+ by preventing the K+-induced release of catecholamines and phentolamine by preventing the circulating catecholamines from interacting with alpha-adrenergic receptor sites.

2021 ◽  
Vol 09 (06) ◽  
pp. E918-E924
Author(s):  
Tomonori Yano ◽  
Atsushi Ohata ◽  
Yuji Hiraki ◽  
Makoto Tanaka ◽  
Satoshi Shinozaki ◽  
...  

Abstract Backgrounds and study aims Gel immersion endoscopy is a novel technique to secure the visual field during endoscopy. The aim of this study was to develop a dedicated gel for this technique. Methods To identify appropriate viscoelasticity and electrical conductivity, various gels were examined. Based on these results, the dedicated gel “OPF-203” was developed. Efficacy and safety of OPF-203 were evaluated in a porcine model. Results  In vitro experiments showed that a viscosity of 230 to 1900 mPa·s, loss tangent (tanδ) ≤ 0.6, and hardness of 240 to 540 N/cm2 were suitable. Ex vivo experiments showed electrical conductivity ≤ 220 μS/cm is appropriate. In vivo experiments using gastrointestinal bleeding showed that OPF-203 provided clear visualization compared to water. After electrocoagulation of gastric mucosa in OPF-203, severe coagulative necrosis was not observed in the muscularis but limited to the mucosa. Conclusions OPF-203 is useful for gel immersion endoscopy.


2021 ◽  
Vol 11 (3) ◽  
pp. 1165
Author(s):  
Wen-Tien Hsiao ◽  
Yi-Hong Chou ◽  
Jhong-Wei Tu ◽  
Ai-Yih Wang ◽  
Lu-Han Lai

The purpose of this study is to establish the minimal injection doses of magnetic resonance imaging (MRI) contrast agents that can achieve optimized images while improving the safety of injectable MRI drugs. Gadolinium-diethylenetriamine penta-acetic acid (Gd-DTPA) and ferucarbotran, commonly used in clinical practice, were selected and evaluated with in vitro and in vivo experiments. MRI was acquired using T1-weighted (T1W) and T2-weighted (T2W) sequences, and the results were quantitatively analyzed. For in vitro experiments, results showed that T1W and T2W images were optimal when Gd-DTPA-bisamide (2-oxoethyl) (Gd-DTPA-BMEA) and ferucarbotran were diluted to a volume percentage of 0.6% and 0.05%; all comparisons were significant differences in grayscale statistics using one-way analysis of variance (ANOVA). For in vivo experiments, the contrast agent with optimal concentration percentages determined from in vitro experiments were injected into mice with an injection volume of 100 μL, and the images of brain, heart, liver, and mesentery before and after injection were compared. The statistical results showed that the p values of both T1W and T2W were less than 0.001, which were statistically significant. Under safety considerations for MRI contrast agent injection, optimized MRI images could still be obtained after reducing the injection concentration, which can provide a reference for the safety concentrations of MRI contrast agent injection in the future.


2014 ◽  
Vol 112 (11) ◽  
pp. 951-959 ◽  
Author(s):  
Morten Eriksen ◽  
Arnfinn Ilebekk ◽  
Alessandro Cataliotti ◽  
Cathrine Rein Carlson ◽  
Torstein Lyberg ◽  
...  

SummaryBradykinin (BK) receptor-2 (B2R) and β2-adrenergic receptor (β2AR) have been shown to form heterodimers in vitro. However, in vivo proofs of the functional effects of B2R-β2AR heterodimerisation are missing. Both BK and adrenergic stimulation are known inducers of tPA release. Our goal was to demonstrate the existence of B2R-β2AR heterodimerisation in myocardium and to define its functional effect on cardiac release of tPA in vivo. We further investigated the effects of a non-selective β-blocker on this receptor interplay. To investigate functional effects of B2R-β2AR heterodimerisation (i. e. BK transactivation of β2AR) in vivo, we induced serial electrical stimulation of cardiac sympathetic nerves (SS) in normal pigs that underwent concomitant BK infusion. Both SS and BK alone induced increases in cardiac tPA release. Importantly, despite B2R desensitisation, simultaneous BK infusion and SS (BK+SS) was characterised by 2.3 ± 0.3-fold enhanced tPA release compared to SS alone. When β-blockade (propranolol) was introduced prior to BK+SS, tPA release was inhibited. A persistent B2R-β2AR heterodimer was confirmed in BK-stimulated and nonstimulated left ventricular myocardium by immunoprecipitation studies and under non-reducing gel conditions. All together, these results strongly suggest BK transactivation of β2AR leading to enhanced β2AR-mediated release of tPA. Importantly, non-selective β-blockade inhibits both SS-induced release of tPA and the functional effects of B2R-β2AR heterodimerisation in vivo, which may have important clinical implications.


2013 ◽  
Vol 14 (2) ◽  
pp. 215-224 ◽  
Author(s):  
Eun-Young Kim ◽  
Sang Soo Lee ◽  
Ji Hoon Shin ◽  
Soo Hyun Kim ◽  
Dong-Ho Shin ◽  
...  

1990 ◽  
Vol 68 (2) ◽  
pp. 735-747 ◽  
Author(s):  
S. L. Archer ◽  
K. Rist ◽  
D. P. Nelson ◽  
E. G. DeMaster ◽  
N. Cowan ◽  
...  

The effects of endothelium-dependent vasodilation on pulmonary vascular hemodynamics were evaluated in a variety of in vivo and in vitro models to determine 1) the comparability of the hemodynamic effects of acetylcholine (ACh), bradykinin (BK), nitric oxide (NO), and 8-bromo-guanosine 3′,5′-cyclic monophosphate (cGMP), 2) whether methylene blue is a useful inhibitor of endothelium-dependent relaxing factor (EDRF) activity in vivo, and 3) the effect of monocrotaline-induced pulmonary hypertension on the responsiveness of the pulmonary vasculature to ACh. In isolated rat lungs, which were preconstricted with hypoxia, ACh, BK, NO, and 8-bromo-cGMP caused pulmonary vasodilation, which was not inhibited by maximum tolerable doses of methylene blue. Methylene blue did not inhibit EDRF activity in any model, despite causing increased pulmonary vascular tone and responsiveness to various constrictor agents. There were significant differences in the hemodynamic characteristics of ACh, BK, and NO. In the isolated lung, BK and NO caused transient decreases of hypoxic vasoconstriction, whereas ACh caused more prolonged vasodilation. Pretreatment of these lungs with NO did not significantly inhibit ACh-induced vasodilation but caused BK to produce vasoconstriction. Tachyphylaxis, which was agonist specific, developed with repeated administration of ACh or BK but not NO. Tachyphylaxis probably resulted from inhibition of the endothelium-dependent vasodilation pathway proximal to NO synthesis, because it could be overcome by exogenous NO. Pretreatment with 8-bromo-cGMP decreased hypoxic pulmonary vasoconstriction and, even when the hypoxic pressor response had largely recovered, subsequent doses of ACh and NO failed to cause vasodilation, although BK produced vasoconstriction. These findings are compatible with the existence of feedback inhibition of the endothelium-dependent relaxation by elevation of cGMP levels. Responsiveness to ACh was retained in lungs with severe monocrotaline-induced pulmonary hypertension. Many of these findings would not have been predicted based on in vitro studies and illustrate the importance for expanding studies of EDRF to in vivo and ex vivo models.


1937 ◽  
Vol 37 (3) ◽  
pp. 471-473 ◽  
Author(s):  
J. Gordon ◽  
N. Wood

In earlier papers (Gordon, 1930) it was shown that congo red has an inactivating effect on serum complement, both haemolytic and bactericidal, and that this effect can be reversed by treating the serum and congo red mixture with charcoal, the charcoal removing the congo red and leaving the complement active again. A similar reversal of inactivation is obtained by using instead of the charcoal, heated serum (55° C. for 30 min.) or protein solutions. Later (Gordon, 1931), it was shown that congo red had an inactivating effect on the haemolysins of Streptococcus haemolyticus and B. welchii. The reversibility of this effect was not so easy to demonstrate as with complement. Charcoal had a destructive effect on the haemolysins and so could not be used. It was found, however, that when the concentration of congo red was just sufficient to neutralize the streptococcal haemolysin, the addition of cuprammonium artificial silk adsorbed the congo red and liberated the haemolysin. In the case of B. welchii this method of reversal was not suitable, as the artificial silk had a destructive effect on the haemolysin. Instead, reversibility was demonstrated by adding ox serum to the mixture of congo red and haemolysin. This brought about a redistribution of the congo red between the ox serum and the haemolysin and if the amount of congo red used had been only just sufficient to neutralize the haemolysin of B. welchii, then the haemolytic activity could again be demonstrated. Gordon and Robson (1933) showed that congo red interfered with the anaphylactic reaction tested both in vivo and in vitro, the guinea-pig uterus being used in the in vitro experiments, in which the inhibitory action of the dye was shown to be reversible. It was suggested that the congo red interfered with the entrance of antigen into the cell.


1993 ◽  
Vol 120 (2) ◽  
pp. 523-535 ◽  
Author(s):  
B E Symington ◽  
Y Takada ◽  
W G Carter

The colocalization of integrins alpha 2 beta 1 and alpha 3 beta 1 at intercellular contact sites of keratinocytes in culture and in epidermis suggests that these integrins may mediate intercellular adhesion (ICA). P1B5, an anti-alpha 3 beta 1 mAb previously reported to inhibit keratinocyte adhesion to epiligrin, was also found to induce ICA. Evidence that P1B5-induced ICA was mediated by alpha 2 beta 1 and alpha 3 beta 1 was obtained using both ICA assays and assays with purified, mAb-immobilized integrins. Selective binding of alpha 2 beta 1-coated beads to epidermal cells or plate-bound alpha 3 beta 1 was observed. This binding was inhibited by mAbs to integrin alpha 3, alpha 2, or beta 1 subunits and could be stimulated by P1B5. We also demonstrate a selective and inhibitable interaction between affinity-purified integrins alpha 2 beta 1 and alpha 3 beta 1. Finally, we show that expression of alpha 2 beta 1 by CHO fibroblasts results in the acquisition of collagen and alpha 3 beta 1 binding. Binding to both of these ligands is inhibited by P1H5, an anti-alpha 2 beta 1 specific mAb. Results of these in vitro experiments suggest that integrins alpha 2 beta 1 and alpha 3 beta 1 can interact and may do so to mediate ICA in vivo. Thus, alpha 3 beta 1 mediates keratinocyte adhesion to epiligrin and plays a second role in ICA via alpha 2 beta 1.


1981 ◽  
Vol 78 (2) ◽  
pp. 1245-1249 ◽  
Author(s):  
Y. Berwald-Netter ◽  
N. Martin-Moutot ◽  
A. Koulakoff ◽  
F. Couraud

1979 ◽  
Author(s):  
J. Hawiger ◽  
S. Parkinson ◽  
S. Timmons

Fibrinogen is a plasma factor required for aggregation of human platelets by ADP. The mechanism of platelet-ADP-fibrinogen interaction was studied by measuring the equilibrium binding of 125I-fibrinogen to human platelets separated from plasma proteins. Binding of 125I-fibrinogen to platelets not stimulated with ADP was low and unaffected by an excess of unlabel led fibrinogen. However, when platelets were stimulated with 4μM of ADP, there was an eightfold increase In the number of available binding sites for human fibrinogen, with affinity constant of 1.9 x 109M-1. This striking increase in fibrinogen receptor sites on human platelets was specific for ADP as contrasted to ATP, AMP, and adenosine. Prostacyclin (Prostaglandin I2, PGI2), a novel prostaglandin produced by the blood vessel wall, completely blocked this ADP-induced increase in fibrinogen receptor sites on human platelets. The effect of PGI2 was prompt and concentration dependent, reaching maximum at 10-9M. 6-keto PGF2 a stable derivative ot PGI2, did not have such an effect. Thus movement of fibrinogen receptor sites on human platelet membrane stimulated with ADP is prevented by PGI2. This represents a new biologic property of this vascular hormone and contributes to better understanding of its potent inhibitory effect in vitro and in vivo on ADP-induced platelet aggregation requiring mobilization of fibrinogen receptor.


2021 ◽  
Vol 2021 ◽  
pp. 1-18
Author(s):  
Fawang Zhu ◽  
Shuai Yuan ◽  
Jing Li ◽  
Yun Mou ◽  
Zhiqiang Hu ◽  
...  

Background. Cilengitide is a selective αvβ3 and αvβ5 integrin inhibitor. We sought to investigate the effect of cilengitide on the neovascularization of abdominal aortic plaques in rabbits and explore its underlying antiangiogenic mechanism on human umbilical vein endothelial cells (HUVECs). Materials and Methods. For the in vivo experiment, the abdominal aortic plaque model of rabbits was established and injected with different doses of cilengitide or saline for 14 consecutive days. Conventional ultrasound (CUS) and contrast-enhanced ultrasound (CEUS) were applied to measure the vascular structure and blood flow parameters. CD31 immunofluorescence staining was performed for examining neovascularization. Relative expressions of vascular endothelial growth factor (VEGF) and integrin of the plaque were determined. For in vitro experiments, HUVECs were tested for proliferation, migration, apoptosis, and tube formation in the presence of different doses of cilengitide. Relative expressions of VEGF, integrin, and Ras/ERK/AKT signaling pathways were determined for the exploration of underlying mechanism. Results. CEUS showed modestly increased size and eccentricity index (EI) of plaques in the control group. Different degrees of reduced size and EI of plaques were observed in two cilengitide treatment groups. The expressions of VEGF and integrin in the plaque were inhibited after 14 days of cilengitide treatment. The neovascularization and apoptosis of the abdominal aorta were also significantly alleviated by cilengitide treatment. For in vitro experiments, cilengitide treatment was found to inhibit the proliferation, migration, and tube formation of HUVECs. However, cilengitide did not induce the apoptosis of HUVECs. A higher dose of cilengitide inhibited the mRNA expression of VEGF-A, β3, and β5, but not αV. Lastly, cilengitide treatment significantly inhibited the Ras/ERK/AKT pathway in the HUVECs. Conclusions. This study showed that cilengitide effectively inhibited the growth of plaque size by inhibiting the angiogenesis of the abdominal aortic plaques and blocking the VEGF-mediated angiogenic effect on HUVECs.


Sign in / Sign up

Export Citation Format

Share Document