Primary role of volume expansion in stimulation of rectal gland function

1985 ◽  
Vol 248 (5) ◽  
pp. R638-R640 ◽  
Author(s):  
R. Solomon ◽  
M. Taylor ◽  
S. Sheth ◽  
P. Silva ◽  
F. H. Epstein

Chloride secretion by the in vivo rectal gland of the shark is stimulated by the intravascular infusion of salt solutions of varying osmolar and sodium concentration. In a cross-perfused and denervated rectal gland, the infusion of a small amount of a hypertonic salt solution raises plasma osmolality but does not increase plasma volume in the donor fish. Under these conditions, rectal gland chloride secretion is not stimulated. A subsequent infusion of isotonic shark Ringer solution increases plasma volume 50%, decreases plasma osmolality, and produces a fourfold increase in chloride secretion and a threefold decrease in vascular resistance within the gland. Both the vasodilatory and secretory responses also follow the infusion of a hypotonic shark Ringer solution. The data further support the hypothesis that the rectal gland of the shark is involved in the regulation of intravascular volume rather than in osmoregulation.

1984 ◽  
Vol 246 (1) ◽  
pp. R63-R66 ◽  
Author(s):  
R. Solomon ◽  
M. Taylor ◽  
J. S. Stoff ◽  
P. Silva ◽  
F. H. Epstein

The spiny dogfish Squalus acanthias responds to volume expansion by increasing the rate of chloride secretion by its rectal gland. The response is elicited by intravascular infusion of either isotonic shark Ringer solution, a 1 M hypertonic sodium chloride solution, or an isotonic hyponatremic solution containing equal volumes of shark Ringer solution and 10% mannitol. The effect of volume expansion was evoked in explanted glands connected to a host fish only by the arterial supply, indicating that the response is mediated by a humoral factor. The explanted gland responded to theophylline (2.5 X 10(-3) M) and adenosine 3',5'-cyclic monophosphate (5 X 10(-4) M) by increasing the rate of secretion of chloride by an amount similar to that induced by volume expansion of the perfusing fish. Theophylline at concentrations (10(-6) to 5 X 10(-5) M) that are known to inhibit the effect of adenosine in isolated perfused glands failed to inhibit the effect of volume expansion on explanted glands. Somatostatin (4.5 X 10(-6) M), which inhibits the effect of vasoactive intestinal peptide (VIP) in the isolated perfused gland, completely prevented the secretory response to volume expansion in explanted glands. Volume expansion is a major stimulus for chloride secretion by the rectal gland. The effect is mediated by a humoral factor that appears to be VIP.


1985 ◽  
Vol 249 (3) ◽  
pp. R348-R354 ◽  
Author(s):  
R. Solomon ◽  
M. Taylor ◽  
D. Dorsey ◽  
P. Silva ◽  
F. H. Epstein

The rectal gland of the shark plays a significant role in the homeostasis of extracellular volume. Regulation of rectal gland function is under hormonal control, but the precise identity of the humoral mediator is unknown. Atriopeptin stimulates rectal gland chloride secretion in vivo. This stimulation of epithelial transport is accompanied by systemic and local hemodynamic effects. Atriopeptin also stimulates chloride secretion by the in vitro perfused rectal gland, an effect that is not accompanied by hemodynamic changes. Extracts of shark heart, but not muscle, brain, kidney, or intestine, contain a heat-stable trypsin-sensitive substance capable of in vitro stimulation of rectal gland chloride secretion. Electron micrographic analysis reveals multiple neurosecretory-like granules in atrial cardiocytes that are only rarely seen in ventricular cardiocytes. By using the in vitro perfused gland as a biologic assay, serum obtained after extracellular volume expansion reveals the presence of a rectal gland stimulatory factor that is not present in serum before expansion. These results are consistent with the hypothesis that atriopeptin is present in shark cardiocytes and is released during volume expansion. The atriopeptin stimulates rectal gland chloride secretion, providing a negative feedback mechanism for the regulation of extracellular volume.


2015 ◽  
Vol 50 (2) ◽  
pp. 141-146 ◽  
Author(s):  
Michael A. McKenney ◽  
Kevin C. Miller ◽  
James E. Deal ◽  
Julie A. Garden-Robinson ◽  
Yeong S. Rhee

Context: Twenty-five percent of athletic trainers administer pickle juice (PJ) to treat cramping. Anecdotally, some clinicians provide multiple boluses of PJ during exercise but warn that repeated ingestion of PJ may cause hyperkalemia. To our knowledge, no researchers have examined the effect of ingesting multiple boluses of PJ on the same day or the effect of ingestion during exercise. Objective: To determine the short-term effects of ingesting a single bolus or multiple boluses of PJ on plasma variables and to characterize changes in plasma variables when individuals ingest PJ and resume exercise. Design: Crossover study. Setting: Laboratory. Patients or Other Participants: Nine euhydrated men (age = 23 ± 4 years, height = 180.9 ± 5.8 cm, mass = 80.7 ± 13.8 kg, urine specific gravity = 1.009 ± 0.005). Intervention(s): On 3 days, participants rested for 30 minutes, and then a blood sample was collected. Participants ingested 0 or 1 bolus (1 mL·kg−1 body weight) of PJ, donned sweat suits, biked vigorously for 30 minutes (approximate temperature = 37°C, relative humidity = 18%), and had a blood sample collected. They either rested for 60 seconds (0- and 1-bolus conditions) or ingested a second 1 mL·kg−1 body weight bolus of PJ (2-bolus condition). They resumed exercise for another 35 minutes. A third blood sample was collected, and they exited the environmental chamber and rested for 60 minutes (approximate temperature = 21°C, relative humidity = 18%). Blood samples were collected at 30 and 60 minutes postexercise. Main Outcome Measure(s): Plasma sodium concentration, plasma potassium concentration, plasma osmolality, and changes in plasma volume. Results: The number of PJ boluses ingested did not affect plasma sodium concentration, plasma potassium concentration, plasma osmolality, or changes in plasma volume over time. The plasma sodium concentration, plasma potassium concentration, and plasma osmolality did not exceed 144.6 mEq·L−1 (144.6 mmol·L−1), 4.98 mEq·L−1 (4.98 mmol·L−1), and 289.5 mOsm·kg−1H2O, respectively, in any condition at any time. Conclusions: Ingesting up to 2 boluses of PJ and resuming exercise caused negligible changes in blood variables. Ingesting up to 2 boluses of PJ did not increase plasma sodium concentration or cause hyperkalemia.


1984 ◽  
Vol 246 (1) ◽  
pp. R67-R71
Author(s):  
R. J. Solomon ◽  
M. Taylor ◽  
R. Rosa ◽  
P. Silva ◽  
F. H. Epstein

Intravascular volume expansion causes a 300% increase in the rate of fluid secretion from, and blood flow to, the in vivo rectal gland of the spiny dogfish Squalus acanthias. Similar increases are also observed in explanted rectal glands perfused through a catheter from the dorsal aorta of a volume-expanded dogfish. Stimulation of rectal gland secretion by volume expansion is not associated with a change in the ratio of chloride secreted to oxygen consumed by the rectal gland and the oxygen extraction ratio, suggesting that an increase in blood flow is necessary to support the increased rate of chloride secretion. Perfusion of the explanted gland with bumetanide (10(-4) M) completely inhibits the secretory response to volume expansion but does not prevent the increase in blood flow. Bumetanide also inhibits dibutyryl adenosine 3',5'-cyclic monophosphate- and theophylline-induced increases in chloride secretion but does not inhibit the hyperemic response. Somatostatin inhibits the secretory response of the explanted gland to volume expansion but does not prevent the increase in blood flow. Although an increase in blood flow is necessary to support the increased energy requirement of enhanced transport, the secretory response and the increase in blood flow appear to be independently regulated and mediated, at least in part, by humoral factors.


1977 ◽  
Vol 232 (5) ◽  
pp. R185-R189
Author(s):  
I. H. Zucker ◽  
C. Gilmore ◽  
J. Dietz ◽  
J. P. Gilmore

The influence of acute intravascular volume expansion on salt gland secretion of conscious, adult geese was investigated. The intravenous administration of 5% dextran in Krebs-bicarbonate-Ringer solution in an amount equivalent to 30% of the estimated blood volume caused a transient but highly significant increase in salt gland secretion independent of changes in plasma osmolality or sodium concentration. Intravenous veratrine (60 microng) caused a similar increase in salt gland secretion only when administered after the volume load. Intravenous 5% NaCl always caused a prolonged and significant increase in salt gland secretion which was not potentiated by veratrine. Volume expansion and hypertonic saline caused a significant tachycardia while veratrine caused a significant bradycardia. It is concluded that a volume component may contribute to the initiation of salt gland secretion in the goose and that the peripheral receptor involved is most likely vascular in origin.


1983 ◽  
Vol 106 (1) ◽  
pp. 25-41 ◽  
Author(s):  
F. H. Epstein ◽  
J. S. Stoff ◽  
P. Silva

Secretion of chloride from blood to lumen is accomplished in the rectal gland of elasmobranchs by a process of secondary active transport involving the co-transport of Cl- with Na+ across the basolateral membranes of rectal gland cells. Energy is provided by ATP via membrane Na-K-ATPase, which establishes an electrochemical gradient favouring Na+ influx into the cell. The involvement of K+ in the co-transport mechanism, so as to provide a ratio of 1 Na+:1 K+:2 Cl- entering the cell, would increase the energetic efficiency of the process, and is consistent with the Cl/O2 ration of 27–30 observed in secreting rectal glands. Secretion is stimulated by cyclic AMP (cAMP) and by vasoactive intestinal peptide (VIP) and adenosine, which activate adenylate cyclase. Activation of the gland in vivo probably occurs via VIP-secreting nerves as well as circulating agents; it is inhibited by somatostatin. Cyclic AMP probably stimulates chloride secretion by at least three mechanisms: (1) increasing chloride conductance across the luminal cell membrane, (2) enhancing the co-transport pathway for transmembrane movements of Na+, K+ and Cl- and (3) activating Na-K-ATPase.


2009 ◽  
Vol 44 (5) ◽  
pp. 454-461 ◽  
Author(s):  
Kevin C. Miller ◽  
Gary Mack ◽  
Kenneth L. Knight

Abstract Context: Health care professionals advocate that athletes who are susceptible to exercise-associated muscle cramps (EAMCs) should moderately increase their fluid and electrolyte intake by drinking sport drinks. Some clinicians have also claimed drinking small volumes of pickle juice effectively relieves acute EAMCs, often alleviating them within 35 seconds. Others fear ingesting pickle juice will enhance dehydration-induced hypertonicity, thereby prolonging dehydration. Objective: To determine if ingesting small quantities of pickle juice, a carbohydrate-electrolyte (CHO-e) drink, or water increases plasma electrolytes or other selected plasma variables. Design: Crossover study. Setting: Exercise physiology laboratory. Patients or Other Participants: Nine euhydrated, healthy men (age  =  25 ± 2 years, height  =  179.4 ± 7.2 cm, mass  =  86.3 ± 15.9 kg) completed the study. Intervention(s): Resting blood samples were collected preingestion (−0.5 minutes); immediately postingestion (0 minutes); and at 1, 5, 10, 15, 20, 25, 30, 45, and 60 minutes postingestion of 1 mL/kg body mass of pickle juice, CHO-e drink, or tap water. Main Outcome Measure(s): Plasma sodium concentration, plasma magnesium concentration, plasma calcium concentration, plasma potassium concentration, plasma osmolality, and changes in plasma volume were analyzed. Urine specific gravity, osmolality, and volume were also measured to characterize hydration status. Results: Mean fluid intake was 86.3 ± 16.7 mL. Plasma sodium concentration, plasma magnesium concentration, plasma calcium concentration, plasma osmolality, and plasma volume did not change during the 60 minutes after ingestion of each fluid (P ≥ .05). Water ingestion slightly decreased plasma potassium concentration at 60 minutes (0.21 ± 0.14 mg/dL [0.21 ± 0.14 mmol/L]; P ≤ .05). Conclusions: At these volumes, ingestion of pickle juice and CHO-e drink did not cause substantial changes in plasma electrolyte concentrations, plasma osmolality, or plasma volume in rested, euhydrated men. Concern that ingesting these volumes of pickle juice might exacerbate an athlete's risk of dehydration-induced hypertonicity may be unwarranted. If EAMCs are caused by large electrolyte loss due to sweating, these volumes of pickle juice or CHO-e drink are unlikely to restore any deficit incurred by exercise.


1977 ◽  
Vol 233 (4) ◽  
pp. F298-F306 ◽  
Author(s):  
P. Silva ◽  
J. Stoff ◽  
M. Field ◽  
L. Fine ◽  
J. N. Forrest ◽  
...  

The isolated rectal gland of Squalus acanthias was stimulated to secrete chloride against an electrical and a chemical gradient when perfused in vitro by theophylline and/or dibutyryl cyclic AMP. Chloride secretion was depressed by ouabain which inhibits Na-K-ATPase. Thiocyanate and furosemide also inhibited chloride secretion but ethoxzolamide, a carbonic anhydrase inhibitor, did not. Chloride transport was highly dependent on sodium concentration in the perfusate. The intracellular concentration of chloride averaged 70-80 meq/liter in intact glands, exceeding the level expected at electrochemical equilibrium and suggesting active transport of chloride into the cell. These features suggest a tentative hypothesis for chloride secretion by the rectal gland in which the uphill transport of chloride into the cytoplasm is coupled through a membrane carrier to the downhill movement of sodium along its electrochemical gradient. The latter is maintained by the Na-K-ATPase pump while chloride is extruded into the duct by electrical forces.


2002 ◽  
Vol 205 (13) ◽  
pp. 1889-1897 ◽  
Author(s):  
Susan K. Fellner ◽  
Laurel Parker

SUMMARY The elasmobranch Squalus acanthias controls plasma osmolality and extracellular fluid volume by secreting a hypertonic fluid from its rectal gland. Because we found a correlation between extracellular Ca2+concentration and changes in cytosolic Ca2+([Ca2+]i), we sought the possible presence of a calcium-sensing receptor in rectal gland artery and tubules. Cytosolic Ca2+ of both tissues responded to the addition of external Ca2+ (0.8-5.3 mmol l-1) in a linear fashion. Spermine,Gd3+ and Ni2+, known agonists of the calcium-sensing receptor, increased [Ca2+]i. To assess the participation of inositol triphosphate (IP3) generation, sarcoplasmic/endoplasmic reticulum (SR/ER) Ca2+ depletion, and activation of store-operated Ca2+ entry, we utilized thapsigargin and ryanodine to deplete Ca2+ SR/ER stores and the inhibitory reagents TMB-8 and 2-APB to block IP3 receptors. In each case, these agents inhibited the[Ca2+]i response to agonist stimulation by approximately 50 %. Blockade of L-channels with nifedipine had no significant effect. Increases in ionic strength are known to inhibit the calcium-sensing receptor. We postulate that the CaSR stimulates Ca2+-mediated constriction of the rectal gland artery and diminishes cyclic AMP-mediated salt secretion in rectal gland tubules during non-feeding conditions. When the shark ingests sea water and fish, an increase in blood and interstitial fluid ionic strength inhibits the activity of the calcium-sensing receptor, relaxing the rectal gland artery and permitting salt secretion by the rectal gland tubules.


Author(s):  
Sumeet Bhanot ◽  
Gabriele Hemminger ◽  
Cole L. Martin ◽  
Stephen G. Aller ◽  
John N. Forrest

Adenosine receptors (ADORs) are G-protein coupled purinoceptors that have several functions including regulation of chloride secretion via CFTR in human airway and kidney. We cloned an ADOR from Squalus acanthias (shark) that likely regulates CFTR in the rectal gland. Phylogenic- and expression- analyses indicate that elasmobranch ADORs are non-olfactory, and appear to represent extant predecessors of mammalian ADORs. We therefore designate the shark ADOR as the A0 receptor. We co-expressed A0 with CFTR in Xenopus laevis oocytes and characterized the coupling of A0 to the chloride channel. Two electrode voltage clamping was performed and current-voltage (I-V) responses were recorded to monitor CFTR status. Only in A0- and CFTR- co-injected oocytes did adenosine analogs produce a significant concentration-dependent activation of CFTR consistent with its electrophysiological signature. A pharmacological profile for A0 was obtained for ADOR agonists and antagonists that differed markedly from all mammalian ADOR subtypes (agonists: R-PIA > S-PIA > CGS21680 > CPA > 2ClADO > CV1808 = DPMA > NECA) and (antagonists: DPCPX > PD115199 > 8PT > CGC > CGS15943). Structures of human ADORs permitted a high-confidence homology model of the shark A0 core which revealed unique structural features of ancestral receptors. We conclude: (1) A0 is a novel and unique adenosine receptor ancestor by functional and structural criteria; (2) A0 likely activates CFTR in vivo and this receptor activates CFTR in oocytes indicating an evolutionary coupling between ADORs and chloride secretion; and (3) A0 appears to be a non-olfactory evolutionary ancestor of all four mammalian ADOR subtypes.


Sign in / Sign up

Export Citation Format

Share Document