gamma-Aminobutyric acid concentrations are maintained in anoxic turtle brain

1985 ◽  
Vol 249 (3) ◽  
pp. R372-R374 ◽  
Author(s):  
P. L. Lutz ◽  
R. Edwards ◽  
P. M. McMahon

Changes in gamma-aminobutyric acid (GABA) concentrations in the turtle (Pseudemys scripta elegans) brain were studied in situ during prolonged anoxia. With the onset of anoxia, the well-documented rapid increases in GABA found in mammalian brains were not observed in the turtle brain. Although not statistically significant, mean GABA concentrations in the turtle brain were reduced from anesthetized control values during the first 30 min of anoxia. During this initial period brain glutamate content declined. Even after 2 h of nitrogen respiration, GABA in the turtle brain still did not rise above control levels. By the 4th h of anoxia, however, GABA had increased to 147% of control values.

2019 ◽  
Vol 30 (3) ◽  
pp. 1393-1406
Author(s):  
N Forte ◽  
F Binda ◽  
A Contestabile ◽  
F Benfenati ◽  
P Baldelli

Abstract Neurotransmitters can be released either synchronously or asynchronously with respect to action potential timing. Synapsins (Syns) are a family of synaptic vesicle (SV) phosphoproteins that assist gamma-aminobutyric acid (GABA) release and allow a physiological excitation/inhibition balance. Consistently, deletion of either or both Syn1 and Syn2 genes is epileptogenic. In this work, we have characterized the effect of SynI knockout (KO) in the regulation of GABA release dynamics. Using patch-clamp recordings in hippocampal slices, we demonstrate that the lack of SynI impairs synchronous GABA release via a reduction of the readily releasable SVs and, in parallel, increases asynchronous GABA release. The effects of SynI deletion on synchronous GABA release were occluded by ω-AgatoxinIVA, indicating the involvement of P/Q-type Ca2+channel-expressing neurons. Using in situ hybridization, we show that SynI is more expressed in parvalbumin (PV) interneurons, characterized by synchronous release, than in cholecystokinin or SOM interneurons, characterized by a more asynchronous release. Optogenetic activation of PV and SOM interneurons revealed a specific reduction of synchronous release in PV/SynIKO interneurons associated with an increased asynchronous release in SOM/SynIKO interneurons. The results demonstrate that SynI is differentially expressed in interneuron subpopulations, where it boosts synchronous and limits asynchronous GABA release.


1964 ◽  
Vol 11 (01) ◽  
pp. 064-074 ◽  
Author(s):  
Robert H Wagner ◽  
William D McLester ◽  
Marion Smith ◽  
K. M Brinkhous

Summary1. The use of several amino acids, glycine, alpha-aminobutyric acid, alanine, beta-alanine, and gamma-aminobutyric acid, as plasma protein precipitants is described.2. A specific procedure is detailed for the preparation of canine antihemophilic factor (AHF, Factor VIII) in which glycine, beta-alanine, and gammaaminobutyric acid serve as the protein precipitants.3. Preliminary results are reported for the precipitation of bovine and human AHF with amino acids.


1966 ◽  
Vol 16 (01/02) ◽  
pp. 198-206 ◽  
Author(s):  
W Straughn ◽  
R. H Wagner

SummaryA simple new procedure is reported for the isolation of canine, bovine, porcine, and human fibrinogen. Two molar β-alanine is used to precipitate fibrinogen from barium sulfate adsorbed plasma. The procedure is characterized by dependability and high yields. The material is 95% to 98% clottable protein but still contains impurities such as plasminogen and fibrin-stabilizing factor. Plasminogen may be removed by adsorption with charcoal. The fibrinogen preparations exhibit marked stability to freezing, lyophilization, and dialysis. Epsilon-amino-n-caproic acid and gamma-aminobutyric acid which were also studied have the property of precipitating proteins from plasma but lack the specificity for fibrinogen found with β-alanine.


2019 ◽  
Vol 1 (1) ◽  
pp. 6-12
Author(s):  
Fatima Javeria ◽  
Shazma Altaf ◽  
Alishah Zair ◽  
Rana Khalid Iqbal

Schizophrenia is a severe mental disease. The word schizophrenia literally means split mind. There are three major categories of symptoms which include positive, negative and cognitive symptoms. The disease is characterized by symptoms of hallucination, delusions, disorganized thinking and speech. Schizophrenia is related to many other mental and psychological problems like suicide, depression, hallucinations. Including these, it is also a problem for the patient’s family and the caregiver. There is no clear reason for the disease, but with the advances in molecular genetics; certain epigenetic mechanisms are involved in the pathophysiology of the disease. Epigenetic mechanisms that are mainly involved are the DNA methylation, copy number variants. With the advent of GWAS, a wide range of SNPs is found linked with the etiology of schizophrenia. These SNPs serve as ‘hubs’; because these all are integrating with each other in causing of schizophrenia risk. Until recently, there is no treatment available to cure the disease; but anti-psychotics can reduce the disease risk by minimizing its symptoms. Dopamine, serotonin, gamma-aminobutyric acid, are the neurotransmitters which serve as drug targets in the treatment of schizophrenia. Due to the involvement of genetic and epigenetic mechanisms, drugs available are already targeting certain genes involved in the etiology of the disease.


Diabetes ◽  
1979 ◽  
Vol 28 (7) ◽  
pp. 629-633 ◽  
Author(s):  
H. Taniguchi ◽  
Y. Okada ◽  
H. Seguchi ◽  
C. Shimada ◽  
M. Seki ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document