Understanding Schizophrenia: Genetic Causes and Treatment

2019 ◽  
Vol 1 (1) ◽  
pp. 6-12
Author(s):  
Fatima Javeria ◽  
Shazma Altaf ◽  
Alishah Zair ◽  
Rana Khalid Iqbal

Schizophrenia is a severe mental disease. The word schizophrenia literally means split mind. There are three major categories of symptoms which include positive, negative and cognitive symptoms. The disease is characterized by symptoms of hallucination, delusions, disorganized thinking and speech. Schizophrenia is related to many other mental and psychological problems like suicide, depression, hallucinations. Including these, it is also a problem for the patient’s family and the caregiver. There is no clear reason for the disease, but with the advances in molecular genetics; certain epigenetic mechanisms are involved in the pathophysiology of the disease. Epigenetic mechanisms that are mainly involved are the DNA methylation, copy number variants. With the advent of GWAS, a wide range of SNPs is found linked with the etiology of schizophrenia. These SNPs serve as ‘hubs’; because these all are integrating with each other in causing of schizophrenia risk. Until recently, there is no treatment available to cure the disease; but anti-psychotics can reduce the disease risk by minimizing its symptoms. Dopamine, serotonin, gamma-aminobutyric acid, are the neurotransmitters which serve as drug targets in the treatment of schizophrenia. Due to the involvement of genetic and epigenetic mechanisms, drugs available are already targeting certain genes involved in the etiology of the disease.

2019 ◽  
Author(s):  
Junhua Rao ◽  
Lihua Peng ◽  
Fang Chen ◽  
Hui Jiang ◽  
Chunyu Geng ◽  
...  

AbstractBackgroundNext-generation sequence (NGS) has rapidly developed in past years which makes whole-genome sequencing (WGS) becoming a more cost- and time-efficient choice in wide range of biological researches. We usually focus on some variant detection via WGS data, such as detection of single nucleotide polymorphism (SNP), insertion and deletion (Indel) and copy number variant (CNV), which playing an important role in many human diseases. However, the feasibility of CNV detection based on WGS by DNBSEQ™ platforms was unclear. We systematically analysed the genome-wide CNV detection power of DNBSEQ™ platforms and Illumina platforms on NA12878 with five commonly used tools, respectively.ResultsDNBSEQ™ platforms showed stable ability to detect slighter more CNVs on genome-wide (average 1.24-fold than Illumina platforms). Then, CNVs based on DNBSEQ™ platforms and Illumina platforms were evaluated with two public benchmarks of NA12878, respectively. DNBSEQ™ and Illumina platforms showed similar sensitivities and precisions on both two benchmarks. Further, the difference between tools for CNV detection was analyzed, and indicated the selection of tool for CNV detection could affected the CNV performance, such as count, distribution, sensitivity and precision.ConclusionThe major contribution of this paper is providing a comprehensive guide for CNV detection based on WGS by DNBSEQ™ platforms for the first time.


2020 ◽  
Author(s):  
Stephen Cristiano ◽  
David McKean ◽  
Jacob Carey ◽  
Paige Bracci ◽  
Paul Brennan ◽  
...  

AbstractGermline copy number variants (CNVs) increase risk for many diseases, yet detection of CNVs and quantifying their contribution to disease risk in large-scale studies is challenging. We developed an approach called CNPBayes to identify latent batch effects, to provide probabilistic estimates of integer copy number across the estimated batches, and to fully integrate the copy number uncertainty in the association model for disease. We demonstrate this approach in a Pancreatic Cancer Case Control study of 7,598 participants where the major sources of technical variation were not captured by study site and varied across the genome. Candidate associations aided by this approach include deletions of 8q24 near regulatory elements of the tumor oncogene MYC and of Tumor Supressor Candidate 3 (TUSC3). This study provides a robust Bayesian inferential framework for estimating copy number and evaluating the role of copy number in heritable diseases.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 106-106
Author(s):  
Christine O’Keefe ◽  
Lukasz Gondek ◽  
Marcin Wlodarski ◽  
Judith Karp ◽  
Michael McDevitt ◽  
...  

Abstract Individual variability, including disease susceptibility, is determined by the interaction of inherited single base differences (single nucleotide polymorphisms, SNPs) and copy number variants (CNVs) of large genomic regions. A complex combination of these factors may result in a genetic background predisposing to disease. Regions of CNV account for approximately 12% of the human genome, including coding sequences and can range in size from kilobases to megabases. Recent studies have investigated the correlation between CNVs and complex conditions, including mental retardation, lupus and cardiovascular disease. While SNPs have been intensely investigated in many diseases, the influence of CNVs on disease susceptibility is only poorly understood. With the advent of high-throughput, high density array technology, global analysis of complex disease predisposition traits, including CNVs, can be performed. We have applied high-density SNP arrays (SNP-A) for the analysis of somatic chromosomal defects in various hematologic disorders. During our studies we noted a high frequency of germ-line CNVs, complicating our analysis of somatic defects. This observation lead us to the hypothesis that CNVs can themselves constitute predisposition factors to disease and chose to systematically investigate their type and frequency in myeloid disorders including aplastic anemia (AA; N=65), myelodysplastic syndrome (MDS; N=145) and primary and secondary (non-core binding factor) acute myeloid leukemia (AML; N=75). We performed whole genome scanning in patients and a cohort of healthy controls (N=79) using the Affymetrix 250K SNP array. We first identified and catalogued CNVs in controls; their frequency was compared to those reported in the Database of Genomic Variants (http://projects.tcag.ca/variation/) and found to be similar. The CNVs ranged in size from 245.6 Kb to 2.32 Mb (average 805.9 Kb) and were identified on all chromosomes except 5, 13, 16, 18 and 21. We next analyzed copy number changes in patients with myeloid disorders. Using controls (both our cohort and those in the literature) as a reference we determined the frequencies of recurrent CNVs in patients. For most of the CNVs the frequency was <10% within the individual patient groups, similar to what was seen in controls. Nonetheless, four regions (2 distinct loci in the pericentromeric region of 14q, pericentromeric 15q and a locus on 17q21.31) were identified in over 15% of samples studied. We then determined whether a distinct CNV is associated with specific disease risk. While for most CNVs the frequencies found in patients were similar to those in controls, two regions, 3q29 and 14q11.2, were more frequently encountered in patients with AML (3q29, 27/75 vs. 13/79 in controls, p=0.01; 14q11.2, 20/75 vs. 8/79 in controls, p=0.014). The region at 3q29 contains several genes and is a common breakpoint region for hematologic malignancies including MDS and AML, suggesting that this chromosomal area sensitive to physical rearrangement. The locus at 14q11.2 is a known hypervariable region, containing T cell receptor genes. In sum, in addition to SNPs, CNVs may be a part of complex genetic traits in patients with AA, MDS and AML and constitute disease predisposition factors. Beyond their potential role in disease, CNVs have to be excluded in SNP array-based analysis of somatic chromosomal lesions.


2012 ◽  
Vol 22 (4) ◽  
pp. 816-824 ◽  
Author(s):  
Jade Chapman ◽  
Elliott Rees ◽  
Denise Harold ◽  
Dobril Ivanov ◽  
Amy Gerrish ◽  
...  

2021 ◽  
Vol 18 ◽  
Author(s):  
Lim Chiew Fei ◽  
Anand Gaurav ◽  
Mayasah Al-Nema

Background: Schizophrenia is a severe mental disorder that affects around 1% of the population worldwide. The available antipsychotics alleviate only the positive symptoms of the illness. But their effect on the negative and cognitive symptoms is limited. The fruit powder of Terminalia bellerica has been found to possess antipsychotic activity which might be useful in treating the symptoms of schizophrenia. Objective: The present study was performed to evaluate the affinity of the active constituents of Terminalia bellerica towards macromolecular drug targets involved in the pathophysiology of schizophrenia and, thereby determine the structural features of the ligands involved in the interactions with the proposed targets. Methods: A Molecular docking study was carried out on ten active constituents of Terminalia bellerica with four-drug targets involved in the aetiology of schizophrenia. These targets are dopamine, N-methyl-D-aspartate, Gamma-aminobutyric acid, and phosphodiesterase 10A receptors. The binding interactions between the target proteins and the ligands with the highest affinities were studied thoroughly. Results: β-sitosterol, ellagic acid, and quercetin displayed high binding affinity toward all the macromolecular drug targets. β-sitosterol possesses a high binding affinity for the dopamine receptor, while quercetin has high binding affinities for both dopamine and N-methyl-D-aspartate receptor. On the other hand, ellagic acid formed stronger binding interactions with Gamma-aminobutyric acid and phosphodiesterase 10A. Conclusion: Terminalia bellerica can serve as a new anti-psychotic drug from natural sources with more promising development.


1978 ◽  
Vol 71 (2) ◽  
pp. 157-175 ◽  
Author(s):  
A Klingman ◽  
R L Chappell

The intracellular response of the ocellar nerve dendrite, the second order neuron in the retina of the dragonfly ocellus, has been modified by application of various drugs and a model developed to explain certain features of that response. Curare blocked the response completely. Both picrotoxin and bicuculline eliminated the "off" overshoot. Bicuculline also decreased the size of response and the sensitivity. gamma-Aminobutyric acid (GABA), however, increased the size of response. The evidence indicates the possibility that the receptor transmitter is acetylcholine and is inhibitory to the ocellar nerve dendrite whereas the feedback transmitter from the ocellar nerve dendrite may be GABA and is facilitory to receptor transmitter release. The model of synaptic feedback interaction developed to be consistent with these results has certain important features. It suggests that the feedback transmitter is released in the dark to increase input sensitivity from receptors in response to dim light. This implies that the dark potential of the ocellar nerve dendrite may be determined by a dynamic equilibrium established by synaptic interaction between it and the receptor terminals. Such a system is also well suited to signalling phasic information about changes in level of illumination over a wide range of intensities, a characteristic which appears to be a significant feature of the dragonfly median ocellar response.


2017 ◽  
Author(s):  
Sergii Ivakhno ◽  
Eric Roller ◽  
Camilla Colombo ◽  
Philip Tedder ◽  
Anthony J. Cox

AbstractMotivationWhole genome sequencing is becoming a diagnostics of choice for the identification of rare inherited and de novo copy number variants in families with various pediatric and late-onset genetic diseases. However, joint variant calling in pedigrees is hampered by the complexity of consensus breakpoint alignment across samples within an arbitrary pedigree structure.ResultsWe have developed a new tool, Canvas SPW, for the identification of inherited and de novo copy number variants from pedigree sequencing data. Canvas SPW supports a number of family structures and provides a wide range of scoring and filtering options to automate and streamline identification of de novo variants.AvailabilityCanvas SPW is available for download from https://github.com/Illumina/[email protected] informationSupplementary data are available at Bioinformatics online.


2015 ◽  
Author(s):  
Roy B Lefkowitz ◽  
John A Tynan ◽  
Tong Liu ◽  
Yijin Wu ◽  
Amin R Mazloom ◽  
...  

Background: Current cell-free DNA (cfDNA) assessment of fetal chromosomes does not analyze and report on all chromosomes. Hence, a significant proportion of fetal chromosomal abnormalities are not detectable by current non-invasive methods. Here we report the clinical validation of a novel NIPT designed to detect genome-wide gains and losses of chromosomal material ≥7 Mb and losses associated with specific deletions <7 Mb. Objective: The objective of this study is to provide a clinical validation of the sensitivity and specificity of a novel NIPT for detection of genome-wide abnormalities. Study Design: This retrospective, blinded study included maternal plasma collected from 1222 study subjects with pregnancies at increased risk for fetal chromosomal abnormalities that were assessed for trisomy 21 (T21), trisomy 18 (T18), trisomy 13 (T13), sex chromosome aneuploidies (SCAs), fetal sex, genome-wide copy number variants (CNVs) 7 Mb and larger, and select deletions smaller than 7 Mb. Performance was assessed by comparing test results with findings from G-band karyotyping, microarray data, or high coverage sequencing. Results: Clinical sensitivity within this study was determined to be 100% for T21, T18, T13, and SCAs, and 97.7% for genome-wide CNVs. Clinical specificity within this study was determined to be 100% for T21, T18, and T13, and 99.9% for SCAs and CNVs. Fetal sex classification had an accuracy of 99.6%. Conclusion: This study has demonstrated that genome-wide non-invasive prenatal testing (NIPT) for fetal chromosomal abnormalities can provide high resolution, sensitive, and specific detection of a wide range of sub-chromosomal and whole chromosomal abnormalities that were previously only detectable by invasive karyotype analysis. In some instances, this NIPT also provided additional clarification about the origin of genetic material that had not been identified by invasive karyotype analysis.


2015 ◽  
Vol 18 (2) ◽  
pp. 127-137 ◽  
Author(s):  
Lisa M. Blair ◽  
Rita H. Pickler ◽  
Cindy Anderson

Preterm infants are at elevated risk for a host of neurodevelopmental problems, including disorders that appear later in life. Gene–environment interactions and prematurity may combine to increase the risk for poor neurodevelopmental outcomes. Increasing evidence supports a genetic link to risk for atypical development; however, no genomic risk profiles are currently used for infants without apparent genetic disorders. The purpose of this review was to synthesize recent evidence of genetic associations with atypical neurodevelopmental outcomes that may affect preterm infants who do not have a rare genetic disease. Electronic and hand-search strategies were used to find relevant articles that were English-language, peer-reviewed primary research or meta-analysis reports published between July 2009 and July 2014, involving human participants. Articles included in the analysis ( N = 29) used a wide range of study designs and methodologies, complicating the analysis. An integrative-review design was used to synthesize the data. Numerous genes ( n = 43) and additional large deletion copy number variants were associated with neurodevelopmental outcomes, including cognition, attention, perception, psychiatric disease, autism spectrum disorder, cerebral palsy, infant behavior, and alterations in brain architecture. The creation of genetic risk profiles for complex disorders of neurodevelopment is presently hindered by inconsistent genetic-association evidence, methodological considerations, reporting problems, and lack of replication. However, several avenues of investigation offer promise, including large (>100 kb) copy number variants and the candidate genes MET, NRG3, and SLC6A4, each of which were reported to have associations with neurodevelopmental outcomes in multiple, high-quality studies.


Author(s):  
Ida Bagus Agung Yogeswara ◽  
Suppasil Maneerat ◽  
Dietmar Haltrich

Glutamate decarboxylase (L-glutamate-1-carboxylase, GAD; EC 4.1.1.15) is a pyridoxal 5-phosphate-dependent enzyme, which catalyzes the irreversible &alpha;-decarboxylation of L-glutamic acid to &gamma;-aminobutyric acid (GABA) and CO2. The enzyme is widely distributed in eukaryotes as well as prokaryotes, where it &ndash; together with its reaction product GABA - fulfils very different physiological functions. The occurrence of gad genes encoding GAD has been shown for many microorganisms, and GABA-producing lactic acid bacteria (LAB) have been a focus of research during recent years. A wide range of traditional foods produced by fermentation based on LAB offer the potential of providing new functional food products enriched with GABA that may offer certain health-benefits. Different GAD enzymes and genes from several strains of LAB have been isolated and characterized recently. GABA-producing LAB, biochemical properties of their GAD enzymes, and possible applications are reviewed here.


Sign in / Sign up

Export Citation Format

Share Document