Decreased hexokinase activity in paraventricular nucleus of adult SHR and renal hypertensive rats
Metabolic activity was assessed in the brains of spontaneously hypertensive rats (SHR) using the histochemical hexokinase (HK) technique and photodensitometric analysis. Of eight regions known to play a role in cardiovascular regulation, only the paraventricular nucleus of the hypothalamus (PVH) exhibited alterations in HK activity. Significantly lower levels of HK activity in SHR than in control Sprague-Dawley and Wistar-Kyoto rats were measured in both the parvo- and magnocellular divisions of the PVH. No differences in HK activity were found in the anterior hypothalamic nucleus, posterior hypothalamic nucleus, supraoptic nucleus, subfornical organ, central nucleus of the amygdala, or the medial nucleus of the tractus solitarius of SHR. Similar results were obtained in renal hypertensive rats; furthermore, a positive correlation was found between levels of arterial pressure and densitometric readings. These latter results strongly suggest that metabolic alterations in the PVH of SHR are directly related to the increases in arterial pressure and are not due to the genetic makeup of SHR. In light of studies by others, the data from the present study have been interpreted to suggest that the decreases in metabolic activity in the PVH of the adult SHR are the result of a central attempt to bring the level of the arterial pressure down to normal levels and not to the altered activity of a region that might be acting to keep arterial pressure elevated.