Diet cycling and age alter weight gain and insulin levels in rats

1994 ◽  
Vol 267 (2) ◽  
pp. R527-R535 ◽  
Author(s):  
B. E. Levin

For assessment of the effect of diet cycling on body weight gain patterns, 3-mo-old male Sprague-Dawley rats were either cycled from chow to a high-energy condensed milk (CM) diet, back to chow, and then back to CM diet at 3-mo intervals (cyclers) or were fed chow to 9 mo of age and then CM diet for 3 mo (noncyclers). Nine of 21 cyclers developed diet-induced obesity (DIO), gaining 36, 59, and 281% more weight than chow-fed controls (CF) at each cycle, respectively. Twelve cycled rats were diet-resistant (DR) with comparable weight gain to CF rats after the first CM diet and chow cycles. However, they gained 202% more than CF rats and 50% more, with 29% heavier retroperitoneal fat pads, than noncycled DR rats after their second CM diet cycle begun at 9 mo of age. Enhanced weight gain in DR cyclers was probably due to enhanced food efficiency in the last few weeks of CM diet intake. Plasma insulin levels were 70% higher in cycled vs. noncycled DIO and DR rats, and both were higher than CF rats. Unlike 6-mo-old DR rats in a prior study, 12-mo-old noncycled DR rats after 3 mo on CM diet here had 45-172% higher alpha 2-adrenoceptors binding in 6 of 17 brain areas than noncycled DIO and/or CF rats. Thus age, diet cycling, and brain alpha 2-adrenoceptors interact to affect long-term changes in weight gain and metabolism.

1987 ◽  
Vol 252 (3) ◽  
pp. R471-R478 ◽  
Author(s):  
B. E. Levin ◽  
J. Triscari ◽  
S. Hogan ◽  
A. C. Sullivan

After 15 wk on a moderately high-calorie high-fat (CM) diet, 43% of 40 3-mo-old male Sprague-Dawley rats developed diet-induced obesity (DIO) (29% more weight gain), whereas 57% of diet-resistant (DR) rats gained no more weight than 20 chow-fed controls. When switched to chow for another 7 wk, DR rats ate 13% less, gained 55% less weight, and had 49% lower food efficiency, whereas DIO rats ate 4% less but had comparable weight gain and efficiency to controls. DIO rats had 29% more carcass lipid (percent of carcass weight). DIO rat retroperitoneal white adipose pads had 65% more cells that were the same size as those in chow-fed pads; DR rat cells were similar to controls. Both DR and DIO rats increased norepinephrine turnover in their interscapular brown adipose pads by greater than 90%. DIO rats also had 40% lower pancreatic turnover; their plasma insulin levels were 327% of controls after 15 wk on the CM diet and 188% after 7 wk on chow. DR levels were the same as controls at both times. Therefore, regulation of caloric intake, pancreatic sympathetic tone, and plasma insulin levels were three important differences between rats that resisted and those that developed DIO on high-energy diets.


Endocrinology ◽  
2003 ◽  
Vol 144 (12) ◽  
pp. 5347-5352 ◽  
Author(s):  
Bénédicte Prunet-Marcassus ◽  
Mathieu Desbazeille ◽  
Arnaud Bros ◽  
Katie Louche ◽  
Philippe Delagrange ◽  
...  

2003 ◽  
Vol 11 (11) ◽  
pp. 1376-1383 ◽  
Author(s):  
Zoe A. Archer ◽  
D. Vernon Rayner ◽  
Jan Rozman ◽  
Martin Klingenspor ◽  
Julian G. Mercer

2017 ◽  
Vol 37 (2) ◽  
pp. 337-343
Author(s):  
Gulsah OZCAN SINIR ◽  
Senem SUNA ◽  
Sevda INAN ◽  
Deniz BAGDAS ◽  
Canan Ece TAMER ◽  
...  

1998 ◽  
Vol 274 (2) ◽  
pp. R412-R419 ◽  
Author(s):  
Barry E. Levin ◽  
Richard E. Keesey

Among outbred Sprague-Dawley rats, approximately one-half develop diet-induced obesity (DIO) and one-half are diet resistant (DR) on a diet relatively high in fat and energy content (HE diet). Here we examined the defense of body weight in these two phenotypes. After HE diet for 13 wk, followed by chow for 6 wk, DR rats gained weight comparably but their plasma leptin levels fell to 54% of chow-fed controls. When a palatable liquid diet (Ensure) was added for 13 wk, other DR rats became obese. But when switched to chow, their intakes fell by 60%, and body and retroperitoneal (RP) fat pad weights and plasma leptin and insulin levels all declined for 2 wk and then stabilized at control levels after 6 wk. In contrast, comparably obese DIO rats decreased their intake by only 20%, and their weights plateaued when they were switched to chow after 13 wk on HE diet. When a subgroup of these DIO rats was restricted to 60% of prior intake, their weights fell to chow-fed control levels over 2 wk. But their leptin and insulin levels both fell disproportionately to 30% of controls. When no longer restricted, their intake and feed efficiency rose immediately, and their body and RP pad weights and leptin and insulin levels rose to those of unrestricted DIO rats within 2 wk. Thus diet and genetic background interact to establish high (DIO) or low (DR) body weight set points, which are then defended against subsequent changes in diet composition and/or energy availability. If leptin affects energy homeostasis, it does so differentially in DIO vs. DR rats since comparably low and high levels were associated with differing patterns of weight change between the two phenotypes.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Saira Tanweer ◽  
Tariq Mehmood ◽  
Saadia Zainab ◽  
Zulfiqar Ahmad ◽  
Muhammad Ammar Khan ◽  
...  

Purpose Innovative health-promoting approaches of the era have verified phytoceutics as one of the prime therapeutic tools to alleviate numerous health-related ailments. The purpose of this paper is to probe the nutraceutic potential of ginger flowers and leaves against hyperglycemia. Design/methodology/approach The aqueous extracts of ginger flowers and leaves were observed on Sprague Dawley rats for 8 weeks. Two parallel studies were carried out based on dietary regimes: control and hyperglycemic diets. At the end of the experimental modus, the overnight fed rats were killed to determine the concentration of glucose and insulin in serum. The insulin resistance and insulin secretions were also calculated by formulae by considering fasting glucose and fasting insulin concentrations. Furthermore, the feed and drink intakes, body weight gain and hematological analysis were also carried out. Findings In streptozotocin-induced hyperglycemic rats, the ginger flowers extract depicted 5.62% reduction; however, ginger leaves extract reduced the glucose concentration up to 7.11% (p = 0.001). Similarly, ginger flowers extract uplifted the insulin concentration up to 3.07%, while, by ginger leaves extract, the insulin value increased to 4.11% (p = 0.002). For the insulin resistance, the ginger flower showed 5.32% decrease; however, the insulin resistance was reduced to 6.48% by ginger leaves (p = 0.014). Moreover, the insulin secretion increased to 18.9% by flower extract and 21.8% by ginger leave extract (p = 0.001). The feed intake and body weight gain increased momentously by the addition of ginger flowers and leaves; however, the drink intake and hematological analysis remained non-significant by the addition of ginger parts. Originality/value Conclusively, it was revealed that leaves have more hypoglycemic potential as compared to flowers.


1985 ◽  
Vol 248 (6) ◽  
pp. R717-R723 ◽  
Author(s):  
B. E. Levin ◽  
M. Finnegan ◽  
J. Triscari ◽  
A. C. Sullivan

Half of the 3-mo male Sprague-Dawley rats fed a high-fat (DIO) diet for 5 mo became obese and had increased carcass lipid (106%) and plasma insulin levels (61%), despite 8% less total energy intake than chow-fed controls. Their interscapular brown adipose tissue (IBAT) was 52% heavier with 45% more lipid and larger uni- and multilocular cells. Norepinephrine turnover was normal in their hearts, pancreases, and aortas but undetectable in IBAT where in vitro lipolysis, but not O2 consumption (VO2), was enhanced. Half the rats fed the DIO diet ate 17% fewer calories, gained weight equally to controls, but still had 34% more carcass lipid. Their IBAT was heavier, contained 103% more protein, with no detectable norepinephrine turnover, whereas maximal lipolysis was 73% lower and maximal VO2 was the same or even lower than controls. IBAT VO2 was stimulated by switching 8-mo chow-fed controls to the DIO diet for 7 days (which caused a 480% greater weight gain) but not by switching 8-mo obese rats to chow for 3 days. Therefore metabolic efficiency was increased while BAT VO2 and norepinephrine turnover were unchanged or reduced compared with controls by either chronic obesity or a high-fat diet.


Molecules ◽  
2020 ◽  
Vol 25 (15) ◽  
pp. 3329
Author(s):  
Yu-Tang Tung ◽  
Pei-Chin Chiang ◽  
Ya-Ling Chen ◽  
Yi-Wen Chien

Melatonin, a pivotal photoperiodic signal transducer, may work as a brown-fat inducer that regulates energy balance. Our study aimed to investigate the effects of melatonin treatment on the body fat accumulation, lipid profiles, and circulating irisin of rats with high-fat diet-induced obesity (DIO). Methods: 30 male Sprague-Dawley rats were divided into five groups and treated for 8 weeks: vehicle control (VC), positive control (PC), MEL10 (10 mg melatonin/kg body weight (BW)), MEL20 (20 mg/kg BW), and MEL50 (50 mg/kg BW). The vehicle control group was fed a control diet, and the other groups were fed a high-fat and high-calorie diet for 8 weeks to induce obesity before the melatonin treatment began. Melatonin reduced weight gain without affecting the food intake, reduced the serum total cholesterol level, enhanced the fecal cholesterol excretion, and increased the circulating irisin level. Melatonin downregulated the fibronectin type III domain containing 5 (FNDC5) and lipoprotein lipase (LPL) mRNA expressions of inguinal white adipose tissue (iWAT) and induced the browning of iWAT in both the MEL10 and MEL20 groups. Conclusion: Chronic continuous melatonin administration in drinking water reduced weight gain and the serum total cholesterol levels. Additionally, it enhanced the circulating irisin, which promoted brite/beige adipocyte recruitment together with cholesterol excretion and contributed to an anti-obesity effect.


1998 ◽  
Vol 274 (6) ◽  
pp. E1057-E1066 ◽  
Author(s):  
Jian Wang ◽  
Jesline T. Alexander ◽  
Ping Zheng ◽  
Hi Joon Yu ◽  
Jordan Dourmashkin ◽  
...  

Patterns of eating behavior, body weight gain, and hormone changes were examined in normal-weight albino Sprague-Dawley rats on macronutrient diets. These diets consisted of either three separate jars with pure macronutrients, fat, carbohydrate and protein, from which to choose, or a single diet with different concentrations of fat and carbohydrate. Similar patterns on the choice-diet and single-diet paradigms were observed. During the first 7–10 days on these diets but not subsequently, the rats consuming a fat-rich diet exhibit significant hyperphagia, an increase in both total and fat intake that produces higher body weight gain. Compared with a 10% fat diet, a 30% fat diet is associated with a decline in insulin and corticosterone (CORT) levels, whereas a 60% fat diet produces an increase in circulating glucose. Levels of glucose are positively correlated with fat intake, and together these measures are consistently related to body fat. These relationships are most strongly expressed in rats that consume a fat-rich diet with >30% fat. Whereas insulin levels are also positively related to body fat, CORT is inversely related in these normal-weight subjects. In animals consuming a high-fat diet, a clear separation can be seen between “obesity-prone” (OP) rats with 100% greater body fat than “obesity-resistant” (OR) rats. The OP rats, which consume 15% more total calories, have significantly higher insulin and glucose levels. In animals that consume a diet with >30% fat, it is the OP but not the OR rats that exhibit a positive relation between fat intake, glucose levels, and body fat and reveal an additional association between carbohydrate intake, insulin, and body fat. Thus these rats on macronutrient diets exhibit distinct traits that relate behavior to hormone disturbances and adiposity and distinguish subjects that are prone vs. resistant to obesity.


2003 ◽  
Vol 285 (3) ◽  
pp. R610-R618 ◽  
Author(s):  
Matthew R. Ricci ◽  
Barry E. Levin

Outbred Sprague-Dawley rats selectively bred for their propensity to develop diet-induced obesity (DIO) become heavier on low-fat diet than those bred to be diet resistant (DR) beginning at ∼5 wk of age. Here we assessed the development of metabolic and neural functions for insights into the origins of their greater weight gain. From week 5 to week 10, chow-fed DIO rats gained 15% more body weight and ate ∼14% more calories but had only slightly greater adiposity and plasma leptin than DR rats. From day 3 through week 10, DIO and DR rats had similar mRNA expression of arcuate nucleus neuropeptide Y, proopiomelanocortin, agouti-related peptide, and all splice variants of the leptin receptor (OB-R). When fed a high-energy (HE; 31% fat) diet, 7-wk-old DIO rats had a 240% increase in plasma leptin levels after only 3 days. Despite this early leptin rise, they maintained a persistent hyperphagia and became more obese than chow-fed DIO rats and DR rats fed chow or HE diet. Their failure to reduce caloric intake, despite high levels of leptin, suggests that selectively bred DIO rats might have reduced leptin sensitivity similar to that seen in the outbred DIO parent strain.


Sign in / Sign up

Export Citation Format

Share Document