Medullary c-Fos activation in rats after ingestion of a satiating meal

1998 ◽  
Vol 275 (1) ◽  
pp. R262-R268 ◽  
Author(s):  
L. Rinaman ◽  
E. A. Baker ◽  
G. E. Hoffman ◽  
E. M. Stricker ◽  
J. G. Verbalis

The distribution and chemical phenotypes of hindbrain neurons that are activated in rats after food ingestion were examined. Rats were anesthetized and perfused with fixative 30 min after the end of 1-h meals of an unrestricted or rationed amount of food, or after no meal. Brain sections were processed for localization of the immediate-early gene product c-Fos, a marker of stimulus-induced neural activation. Hindbrain c-Fos expression was low in rats that ate a rationed meal or no meal. Conversely, c-Fos was prominent in the medial nucleus of the solitary tract (NST) and area postrema in rats that ate to satiety. There was a significant positive correlation between postmortem weight of gastric contents and the proportion of NST catecholaminergic neurons expressing c-Fos. Cells in the ventrolateral medulla (VLM) were not activated in rats after food ingestion, in contrast with previous findings that stimulation of gastric vagal afferents with anorexigenic doses of cholecystokinin activates c-Fos expression in both NST and VLM catecholaminergic cells. These findings indicate that anatomically distinct subsets of hindbrain catecholaminergic neurons are activated in rats after food ingestion and that activation of these cells is quantitatively related to the magnitude of feeding-induced gastric distension.

2001 ◽  
Vol 281 (4) ◽  
pp. R1243-R1255 ◽  
Author(s):  
I. Billig ◽  
B. J. Yates ◽  
L. Rinaman

Posterior pituitary hormone secretion and central neural expression of the immediate-early gene product c-Fos was examined in adult ferrets after intravenous administration of CCK octapeptide. Pharmacological doses of CCK (1, 5, 10, or 50 μg/kg) did not induce emesis, but elicited behavioral signs of nausea and dose-related increases in plasma vasopressin (AVP) levels without significant increases in plasma oxytocin (OT) levels. CCK activated neuronal c-Fos expression in several brain stem viscerosensory regions, including a dose-related activation of neurons in the dorsal vagal complex (DVC). Activated brain stem neurons included catecholaminergic and glucagon-like peptide-1-positive cells in the DVC and ventrolateral medulla. In the forebrain, activated neurons were prevalent in the paraventricular and supraoptic nuclei of the hypothalamus and also were observed in the central nucleus of the amygdala and bed nucleus of the stria terminalis. Activated hypothalamic neurons included cells that were immunoreactive for AVP, OT, and corticotropin-releasing factor. Comparable patterns of brain stem and forebrain c-Fos activation were observed in ferrets after intraperitoneal injection of lithium chloride (LiCl; 86 mg/kg), a classic emetic agent. However, LiCl activated more neurons in the area postrema and fewer neurons in the nucleus of the solitary tract compared with CCK. Together with results from previous studies in rodents, our findings support the view that nauseogenic treatments activate similar central neural circuits in emetic and nonemetic species, despite differences in treatment-induced emesis and pituitary hormone secretion.


2005 ◽  
Vol 289 (3) ◽  
pp. R695-R703 ◽  
Author(s):  
E. H. E. M. van de Wall ◽  
P. Duffy ◽  
R. C. Ritter

Capsaicin treatment destroys vagal afferent C fibers and markedly attenuates reduction of food intake and induction of hindbrain Fos expression by CCK. However, both anatomical and electrophysiological data indicate that some gastric vagal afferents are not destroyed by capsaicin. Because CCK enhances behavioral and electrophysiological responses to gastric distension in rats and people, we hypothesized that CCK might enhance the vagal afferent response to gastric distension via an action on capsaicin-insensitive vagal afferents. To test this hypothesis, we quantified expression of Fos-like immunoreactivity (Fos) in the dorsal vagal complex (DVC) of capsaicin-treated (Cap) and control rats (Veh), following gastric balloon distension alone and in combination with CCK injection. In Veh rats, intraperitoneal CCK significantly increased DVC Fos, especially in nucleus of the solitary tract (NTS), whereas in Cap rats, CCK did not significantly increase DVC Fos. In contrast to CCK, gastric distension did significantly increase Fos expression in the NTS of both Veh and Cap rats, although distension-induced Fos was attenuated in Cap rats. When CCK was administered during gastric distension, it significantly enhanced NTS Fos expression in response to distension in Cap rats. Furthermore, CCK's enhancement of distension-induced Fos in Cap rats was reversed by the selective CCK-A receptor antagonist lorglumide. We conclude that CCK directly activates capsaicin-sensitive C-type vagal afferents. However, in capsaicin-resistant A-type afferents, CCK's principal action may be facilitation of responses to gastric distension.


1999 ◽  
Vol 277 (2) ◽  
pp. R532-R540 ◽  
Author(s):  
Kathleen S. Curtis ◽  
J. Thomas Cunningham ◽  
Cheryl M. Heesch

Fos and dopamine β-hydroxylase immunoreactivity were evaluated in the brain stems of 21-day pregnant and virgin female rats injected with either hydralazine (HDZ; 10 mg/kg iv) or vehicle. HDZ produced significant hypotension in both groups, although baseline blood pressure was lower in pregnant rats (96 ± 2.5 mmHg) than in virgin female rats (121 ± 2.8 mmHg). There were no differences in Fos immunoreactivity in the brain stems of pregnant and virgin female rats after vehicle treatment. HDZ-induced hypotension significantly increased Fos expression in both groups; however, the magnitude of the increases differed in the caudal ventrolateral medulla (CVL), the area postrema (AP), and the rostral ventrolateral medulla (RVL). Fos expression after HDZ in pregnant rats was augmented in noncatecholaminergic neurons of the CVL but was attenuated in the AP and in noncatecholaminergic neurons in the RVL. These results are consistent with differences in the sympathetic response to hypotension between pregnant and virgin female rats and indicate that the central response to hypotension may be different in pregnant rats.


1997 ◽  
Vol 273 (6) ◽  
pp. R2059-R2071 ◽  
Author(s):  
Hubert Mönnikes ◽  
Gerd Lauer ◽  
Christoph Bauer ◽  
Johannes Tebbe ◽  
Tillmann T. Zittel ◽  
...  

Exogenous cholecystokinin (CCK) injected peripherally mimics effects of lipid entering the intestine on food intake and gastric motility via vagal afferents and induces c- fos expression in the locus ceruleus complex (LCC), nucleus of the solitary tract (NTS), area postrema (AP), and paraventricular nucleus (PVN). However, the role of peripheral endogenous CCK in induction of c- fos expression in the brain at ingestion of nutrients is controversial. In awake rats, intraduodenal lipid infusion markedly increased Fos protein-like immunoreactivity (FLI) in these brain nuclei. Perivagal capsaicin pretreatment reduced the increase of FLI in the LCC, NTS, and PVN by 66–86% and in the AP by 46%. The CCK-A receptor antagonist MK-329 (0.1 mg/kg ip) diminished the FLI increase in LC, NTS, AP, and PVN by 39–100%; the CCK-B receptor antagonist L-365,260 reduced the increased FLI in the AP by 54%. After capsaicin pretreatment, both CCK antagonists had additional inhibitory effects only on FLI in the AP. These findings suggest that entry of lipid into the intestine activates c- fos in the LCC, NTS, and PVN predominantly via CCK-A receptors on vagal afferents and in the AP via vagal and nonvagal pathways, as well as CCK-B and CCK-A receptors.


2018 ◽  
Author(s):  
Veronica L. Flores ◽  
Tamar Parmet ◽  
Narendra Mukherjee ◽  
Sacha Nelson ◽  
Donald B. Katz ◽  
...  

ABSTRACTThe strength of learned associations between pairs of stimuli is affected by multiple factors, the most extensively studied of which is prior experience with the stimuli themselves. In contrast, little data is available regarding how experience with incidental stimuli (independent of any conditioning situation) impacts later learning. This lack of research is striking given the importance of incidental experience to survival. We have recently begun to fill this void using conditioned taste aversion (CTA), wherein an animal learns to avoid a taste that has been associated with malaise. We previously demonstrated that incidental exposure to salty and sour tastes (taste pre-exposure—TPE) enhances aversions learned later to sucrose. Here, we investigate the neurobiology underlying this phenomenon. First, we use immediate early gene (c-Fos) expression to identify gustatory cortex (GC) as a site at which TPE specifically increases the neural activation caused by taste-malaise pairing (i.e., TPE did not change c-Fos induced by either stimulus in isolation). Next, we use site-specific infection with the optical silencer Archaerhodopsin-T to show that GC inactivation during TPE inhibits the expected enhancements of both learning and CTA-related c-Fos expression, a full day later. Thus, we conclude that GC is almost certainly a vital part of the circuit that integrates incidental experience into later associative learning.


1996 ◽  
Vol 271 (1) ◽  
pp. R228-R236 ◽  
Author(s):  
F. M. Boissonade ◽  
J. S. Davison

Previous studies have demonstrated that intraduodenal hypertonic saline (IHS) induces dense Fos expression within two regions of the ferret dorsal vagal complex (DVC): the area postrema (AP) and the medial subnucleus of the nucleus of the solitary tract (mn). The aims of the present experiments were to determine the peripheral pathways involved in excitation of DVC neurons after IHS and the relative importance of mn and AP excitation in the emetic response to this stimulus. The emetic response and the distribution of Fos were examined after IHS in animals that had received either vagotomy alone, vagotomy and splanchnic nerve section, or sham operation. The emetic response was studied in both awake and anesthetized animals, and Fos induction was studied in anesthetized animals. Vagotomy alone or combined with splanchnic nerve section abolished the emetic response and the area of dense labeling within the mn and reduced but did not abolish the labeling in the AP. It was concluded that both the emetic reflex and the dense expression of Fos within the mn after IHS are dependent on an intact vagus nerve. The excitation of neurons in the AP after IHS is partially dependent on vagal afferents, and the residual labeling that is present in the AP of neurectomized animals may be mediated via a blood-borne route.


1999 ◽  
Vol 277 (4) ◽  
pp. R1104-R1111 ◽  
Author(s):  
Huiyuan Zheng ◽  
Lisa Kelly ◽  
Laurel M. Patterson ◽  
Hans-Rudolf Berthoud

To test the possible role of N-methyl-d-aspartate (NMDA) glutamate receptors in the transmission of gastrointestinal satiety signals at the level of the nucleus of the solitary tract (NTS), we assessed the effect of fourth ventricular infusion of the noncompetitive NMDA receptor antagonist MK-801 on short-term sucrose intake and on gastric distension-induced Fos expression in the dorsal vagal complex of unanesthetized rats. MK-801, although not affecting initial rate of intake, significantly increased sucrose intake during the later phase of the meal (10–30 min, 8.9 ± 1.0 vs. 2.9 ± 0.8 ml, P < 0.01). In the medial subnucleus of the NTS, the area postrema, and the dorsal motor nucleus, MK-801 did not reduce gastric distension-induced Fos expression and itself did not significantly induce Fos expression. In the dorsomedial, commissural, and gelatinosus subnuclei, MK-801 in itself produced significant Fos expression and significantly reduced (−75%, P < 0.05) the ability of gastric distension to induce Fos expression, assuming an additive model with two separate populations of neurons activated by distension and the blocker. Although these results are consistent with NMDA receptor-mediated glutamatergic transmission of vagal satiety signals in general, they lend limited support for such a role in the transmission of specific gastric distension signals.


1998 ◽  
Vol 274 (6) ◽  
pp. R1725-R1733 ◽  
Author(s):  
Curtis B. Phifer ◽  
Hans-Rudolf Berthoud

Duodenal infusions of macronutrients inhibit sham and normal feeding. Neural substrates of this response were studied by infusing glucose, linoleic acid, an amino acid mixture, saline, or water into the duodenum of unanesthetized rats and then measuring sham feeding of 30% sucrose or Fos expression in the dorsal vagal complex. Linoleic acid and amino acids (both 1.5 kcal) and glucose (4.5 kcal) suppressed sham feeding relative to control infusions, and all three macronutrients triggered Fos expression in the nucleus of the solitary tract and area postrema. Although there were significant quantitative differences, the subnuclear distribution pattern of Fos-expressing neurons was not different for the three macronutrients and was largely localized to the medial, dorsomedial, and commissural subnuclei of the nucleus of the solitary tract and the area postrema. Linoleic acid suppressed intake and stimulated Fos expression similarly to glucose infusions of three times the caloric value. Amino acids strongly suppressed sham feeding but triggered relatively little Fos expression. These results indicate that the intake-suppressing potency of duodenal macronutrients is dependent on nutrient type, rather than simply caloric value, and that amino acids, although potent inducers of satiety, affect ingestion by processes different from those subserving lipids and carbohydrates. Furthermore, the similar patterns of neuronal activation after different duodenal infusions may indicate a large degree of convergence at the level of primary and second-order sensory neurons, whereas the distinctly different pattern obtained earlier with gastric distension indicates partially separate neural pathways for satiety signals generated by duodenal nutrients and gastric mechanoreceptors.


2010 ◽  
Vol 298 (4) ◽  
pp. R1098-R1110 ◽  
Author(s):  
Elena-Dana Baraboi ◽  
Pauline Smith ◽  
Alastair V. Ferguson ◽  
Denis Richard

The mechanism and route whereby glucagon-like peptide 1 (GLP-1) receptor agonists, such as GLP-1 and exendin-4 (Ex-4), access the central nervous system (CNS) to exert their metabolic effects have yet to be clarified. The primary objective of the present study was to investigate the potential role of two circumventricular organs (CVOs), the area postrema (AP) and the subfornical organ (SFO), in mediating the metabolic and CNS-stimulating effects of Ex-4. We demonstrated that electrolytic ablation of the AP, SFO, or AP + SFO does not acutely prevent the anorectic effects of Ex-4. AP + SFO lesion chronically decreased food intake and body weight and also modulated the effect of Ex-4 on the neuronal activation of brain structures involved in the hypothalamic-pituitary-adrenal axis and glucose metabolism. The results of the study also showed that CVO lesions blunted Ex-4-induced expression of c- fos mRNA (a widely used neuronal activity marker) in 1) limbic structures (bed nucleus of the stria terminalis and central amygdala), 2) hypothalamus (paraventricular hypothalamic nucleus, supraoptic nucleus, and arcuate nucleus), and 3) hindbrain (lateral and lateral-external parabrachial nucleus, medial nucleus of the solitary tract, and ventrolateral medulla). In conclusion, although the present results do not support a role for the CVOs in the anorectic effect induced by a single injection of Ex-4, they suggest that the CVOs play important roles in mediating the actions of Ex-4 in the activation of CNS structures involved in homeostatic control.


2001 ◽  
Vol 280 (3) ◽  
pp. G420-G430 ◽  
Author(s):  
Daisheng Song ◽  
Keith A. Sharkey ◽  
Deanne R. Breitman ◽  
Yikun Zhang ◽  
Samuel S. Lee

Portal hypertension due to either prehepatic portal hypertension or cirrhosis is associated with cardiovascular derangement. We aimed to delineate regulatory mechanisms in the brain stem cardiovascular nuclei in rat models of prehepatic portal hypertension and cirrhosis. Neuronal activation in the nucleus of the solitary tract (NTS) and ventrolateral medulla (VLM) were assessed by immunohistochemical staining for the immediate-early gene product Fos. In the same sections, catecholaminergic neurons were counted by tyrosine hydroxylase (TH) staining. Ninety minutes after hypotensive hemorrhage (or no volume challenge), the animals were killed for Fos and TH medullary staining. These protocols were repeated after capsaicin administration. The NTS of unchallenged sham-operated rats had scant Fos-positive cells (3.6 ± 0.4 cells/section), whereas hemorrhage significantly increased Fos staining (91.8 ± 14). In contrast, the unchallenged portal hypertensive and cirrhotic groups showed increased Fos staining (14.3 ± 5.8 and 32.8 ± 2.8, respectively), which hemorrhage did not alter significantly. The numbers of TH-positive cells were similar in the three unchallenged groups; double labeling revealed that ∼50% of TH-positive cells were activated by hemorrhage in the sham and cirrhotic rats but not the portal hypertensive rats. Similar patterns of Fos and TH staining were observed in the VLM. Capsaicin treatment not only significantly reduced the Fos-positive neuron numbers in portal hypertensive and cirrhotic rats but also attenuated hemorrhage-induced Fos and double-positive cells in both NTS and VLM. These results suggest that disordered trafficking in capsaicin-sensitive nerves and central dysregulation contribute to blunted cardiovascular responsiveness in cirrhosis and prehepatic portal hypertension.


Sign in / Sign up

Export Citation Format

Share Document