scholarly journals Coupling effect of locomotor activity on the rat’s circadian system

1998 ◽  
Vol 275 (2) ◽  
pp. R580-R587 ◽  
Author(s):  
Pedro Lax ◽  
Salvador Zamora ◽  
Juan A. Madrid

Exercise is recognized to affect circadian rhythmicity in a variety of ways. It masks the expression of other behavioral and physiological rhythms, entrains the master pacemaker, and influences the free-running period of other rhythms. In this paper we study the influence of exercise on the organization of the timing system by analyzing the effect of voluntary locomotor activity on the circadian feeding behavior of rats subjected to different lighting conditions. The availability of wheel running prevented loss of feeding circadian rhythmicity under constant bright light (LL) but did not elicit any circadian pattern in rats showing a previous arrhythmic pattern. Under dim red light (DR), the rhythm was more pronounced in exercising than in sedentary rats, while wheel-running availability accelerated the emergence of circadian rhythmicity in arrhythmic animals that were moved from LL to DR. These results can be explained by the existence of a positive feedback loop between physical exercise and its pacemaker and also suggest that exercise changes the functioning of the circadian system to facilitate the emergence of circadian rhythms in previously arrhythmic animals.

1981 ◽  
Vol 241 (1) ◽  
pp. R62-R66 ◽  
Author(s):  
H. E. Albers

The circadian wheel-running rhythms of gonadectomized adult male, female, and perinatally androgenized female rats, maintained in constant darkness, were examined before and after implantation of Silastic capsules containing cholesterol (C) or estradiol-17 beta (E). The free-running period of the activity rhythm (tau) before capsule implantation tended to be shorter in animals exposed to perinatal androgen. Administration of C did not reliably alter tau in any group. E significantly shortened tau in 100% of females injected with oil on day 3 of life. In females, injected with 3.5 micrograms testosterone propionate on day 3, and males, E shortened or lengthened tau, with the direction and magnitude of this change in tau inversely related to the length of the individual's pretreatment tau. These data indicate that the presence of perinatal androgen does not eliminate the sensitivity of the circadian system of the rat to estrogen, since estrogen alters tau in a manner that depends on its pretreatment length.


1992 ◽  
Vol 263 (5) ◽  
pp. R1099-R1103 ◽  
Author(s):  
P. C. Zee ◽  
R. S. Rosenberg ◽  
F. W. Turek

The phase angle of entrainment of the circadian rhythm of the locomotor activity rhythm to a light-dark (LD) cycle was examined in young (2-5 mo old) and middle-aged (13-16 mo old) hamsters. An age-related phase advance in the onset of locomotor activity relative to lights off was seen during stable entrainment to a 14:10-h LD cycle. In addition, the effects of age on the rate of reentrainment of the circadian rhythm of locomotor activity were examined by subjecting young and middle-aged hamsters to either an 8-h advance or delay shift of the LD cycle. Middle-aged hamsters resynchronized more rapidly after a phase advance of the LD cycle than did young hamsters, whereas young hamsters were able to phase delay more rapidly than middle-aged hamsters. The age-related phase advance of activity onset under entrained conditions, and the alteration of responses in middle-aged hamsters reentraining to a phase-shifted LD cycle, may be due to the shortening of the free-running period of the circadian rhythm of locomotor activity with advancing age that has previously been observed in this species.


2012 ◽  
Vol 520 (5) ◽  
pp. 970-987 ◽  
Author(s):  
Christiane Hermann ◽  
Taishi Yoshii ◽  
Verena Dusik ◽  
Charlotte Helfrich-Förster

1985 ◽  
Vol 248 (4) ◽  
pp. R407-R414
Author(s):  
H. Underwood

All submammalian vertebrates have extraretinal photoreceptors (ERR) that can mediate entrainment of circadian rhythms to 24-h light-dark (LD) cycles. Phase response curves (PRC) for 6-h fluorescent light pulses were generated for lizards (Sceloporus occidentalis) previously subjected to sectioning of both optic nerves (ONX). The PRC for ONX lizards (only ERRs present) shows a threefold increase in the amplitude of both the advance and delay portions of the PRC compared with a PRC previously generated for sighted S. occidentalis. Also, in contrast to sighted lizards the area of the advance part of the PRC of ONX lizards is greater than the delay portion. Consistent with the shape of the respective PRCs in ONX vs. sighted lizards are the following facts. 1) The range of entrainment to LD cycles is greater in ONX lizards; some sighted lizards free-ran when exposed to LD 6:21.5 or LD 6:23.5 but entrained after ONX lizards reentrained to an 8-h shift in the phase of a LD 6:18 cycle significantly faster than sighted lizards. 3) Forty-two percent of ONX lizards showed a shorter free-running period (tau) in LL than DD, whereas 90% of sighted lizards showed a longer free-running period in LL than in DD. In those lizards in which tau LL greater than tau DD, the the average tau change in ONX lizards in was significantly less than that observed in sighted lizards. These results are consistent with the hypothesis that the eyes have an "inhibitory" role in the circadian system of S. occidentalis.


1991 ◽  
Vol 261 (4) ◽  
pp. R928-R933 ◽  
Author(s):  
D. M. Edgar ◽  
W. C. Dement

Circadian rhythm entrainment has long been thought to depend exclusively on periodic cues in the external environment. However, evidence now suggests that appropriately timed vigorous activity may also phase shift the circadian clock. Previously it was not known whether levels of exercise/activity associated with spontaneous behavior provided sufficient feedback to phase shift or synchronize circadian rhythms. The present study investigated this issue by monitoring the sleep-wake, drinking, and wheel-running circadian rhythms of mice (Mus musculus) during unrestricted access to running wheels and when free wheel rotation was limited to either 12- or 6-h intervals with a fixed period of 24 h. Wheel rotation was controlled remotely. Mice spontaneously ran in wheels during scheduled access, and free-running sleep-wake and drinking circadian rhythms became entrained to scheduled exercise in 11 of 15 animals. However, steady-state entrainment was achieved only when exercise commenced several hours into the subjective night. The temporal placement of running during entrainment was related (r = 0.7003, P less than 0.02) to free-running period before entrainment. Mice with a free-running period less than 23.0 h did not entrain but exhibited relative coordination between free-running variables and the wheel availability schedule. Thus the circadian timekeeping system responds to temporal feedback arising from the timing of volitional exercise/activity, suggesting that the biological clock not only is responsive to periodic geophysical events in the external environment but also derives physiological feedback from the spontaneous activity behaviors of the organism.


SLEEP ◽  
2020 ◽  
Author(s):  
Samuel Deurveilher ◽  
Kristin Robin Ko ◽  
Brock St C Saumure ◽  
George S Robertson ◽  
Benjamin Rusak ◽  
...  

Abstract Sleep and circadian rhythm disruptions commonly occur in individuals with schizophrenia. Stable tubule only polypeptide (STOP) knockout (KO) mice show behavioral impairments resembling symptoms of schizophrenia. We previously reported that STOP KO mice slept less and had more fragmented sleep and waking than wild-type littermates under a light/dark (LD) cycle. Here, we assessed the circadian phenotype of male STOP KO mice by examining wheel-running activity rhythms and EEG/EMG-defined sleep/wake states under both LD and constant darkness (DD) conditions. Wheel-running activity rhythms in KO and wild-type mice were similarly entrained in LD, and had similar free-running periods in DD. The phase delay shift in response to a light pulse given early in the active phase under DD was preserved in KO mice. KO mice had markedly lower activity levels, lower amplitude activity rhythms, less stable activity onsets, and more fragmented activity than wild-type mice in both lighting conditions. KO mice also spent more time awake and less time in rapid eye movement sleep (REMS) and non-REMS (NREMS) in both LD and DD conditions, with the decrease in NREMS concentrated in the active phase. KO mice also showed altered EEG features and higher amplitude rhythms in wake and NREMS (but not REMS) amounts in both lighting conditions, with a longer free-running period in DD, compared to wild-type mice. These results indicate that the STOP null mutation in mice altered the regulation of sleep/wake physiology and activity rhythm expression, but did not grossly disrupt circadian mechanisms.


1982 ◽  
Vol 242 (3) ◽  
pp. R261-R264 ◽  
Author(s):  
P. W. Cheung ◽  
C. E. McCormack

These experiments were undertaken to determine if the pineal gland is involved in the physiological mechanism by which the rat alters its free-running period (tau) in response to changes in illuminance. Spontaneous wheel-running activity was recorded from pinealectomized or sham-operated female Charles River rats. The tau of running activity was determined in continuous darkness (DD) or in continuous dim light (LL). Pinealectomized rats and sham-operated rats lengthened their tau's to approximately the same extent when shifted from DD to LL and shortened their tau's when shifted back to DD. Continuous melatonin administration via Silastic capsules failed to alter tau of rats kept in dim LL. These results indicate that the pineal is not primarily involved in the mechanism by which the rat alters tau in response to changes in illuminance.


1998 ◽  
Vol 275 (4) ◽  
pp. R960-R968 ◽  
Author(s):  
Fred C. Davis ◽  
N. Viswanathan

The causes of age-related disruptions in the timing of human sleep and wakefulness are not known but may include changes in both the homeostatic and circadian regulation of sleep. In Syrian hamsters the free running period of the circadian activity/rest rhythm has been reported to shorten with age. Although this has been observed under a variety of experimental conditions, the changes have been small and their consistency uncertain. In the present study, the wheel running activity/rest rhythm was continuously measured in male Syrian hamsters ( Mesocricetus auratus) in dim constant light (<1 lx) from 8 wk of age until death. Fifteen hamsters survived to at least 90 wk (28%). The average free running period of these hamsters did not change with age. In 18 hamsters that died between 50 and 88 wk, free running period also did not change before death. In contrast to free running period, other measures related to activity level changed significantly with age and before death. Despite changes in the expression of the activity/rest rhythm, the free running period of the hamster circadian pacemaker remained remarkably stable with age.


Sign in / Sign up

Export Citation Format

Share Document