Stress alters cutaneous permeability barrier homeostasis

2000 ◽  
Vol 278 (2) ◽  
pp. R367-R372 ◽  
Author(s):  
Mitsuhiro Denda ◽  
Toru Tsuchiya ◽  
Peter M. Elias ◽  
Kenneth R. Feingold

Recent studies have shown that psychological stress can influence cutaneous barrier function, suggesting that this form of stress could trigger or aggravate skin disease. In the present study, we demonstrate that transfer of hairless mice to a different cage delays barrier recovery rates. Pretreatment with a phenothiazine sedative, chlorpromazine, before transfer of animals restored the kinetics of barrier recovery toward normal, suggesting that psychological stress is the basis for this alteration in barrier homeostasis. To determine the mechanism linking psychological stress to altered barrier recovery, we first demonstrated that plasma corticosterone levels increase markedly after transfer of animals to new cages and that pretreatment with chlorpromazine blocks this increase. Second, we demonstrated that the systemic administration of corticosterone delays barrier recovery. Finally, we demonstrated that pretreatment with the glucocorticoid receptor antagonist RU-486 blocks the delay in barrier recovery produced by systemic corticosterone, change of cage, or immobilization. These results suggest that psychological stress stimulates increased production of glucocorticoids, which, in turn, adversely affects permeability barrier homeostasis.

1999 ◽  
Vol 276 (1) ◽  
pp. G199-G205 ◽  
Author(s):  
Mark G. Swain ◽  
Caroline Appleyard ◽  
John Wallace ◽  
Howard Wong ◽  
Tai Le

Endogenous glucocorticoids are known to play a role in the regulation of the inflammatory response possibly by modulating pro- and anti-inflammatory cytokine expression. We examined endogenous glucocorticoid secretion, hepatic damage, tumor necrosis factor-α (TNF-α), and interleukin-10 (IL-10) mRNA expression and release in rats treated with carbon tetrachloride (CCl4) after treatment with vehicle or a glucocorticoid receptor antagonist (RU-486). Rats treated with CCl4 demonstrated striking elevations of plasma corticosterone levels. Inhibition of endogenous glucocorticoid activity by pretreatment with the glucocorticoid receptor antagonist RU-486 resulted in augmented CCl4-mediated hepatotoxicity, as reflected by histology and serum transaminase levels, which were independent of alterations in serum TNF-α levels or hepatic mRNA expression. CCl4 treatment resulted in enhanced hepatic IL-10 mRNA expression and elevated serum IL-10 levels, which were markedly attenuated by glucocorticoid receptor blockade. In summary, significant endogenous glucocorticoid release occurs during acute toxic liver injury in the rat and suppresses the inflammatory response independent of effects on TNF-α but possibly by upregulating hepatic IL-10 production.


2006 ◽  
Vol 291 (6) ◽  
pp. R1657-R1662 ◽  
Author(s):  
Eung-Ho Choi ◽  
Marianne Demerjian ◽  
Debra Crumrine ◽  
Barbara E. Brown ◽  
Theodora Mauro ◽  
...  

Many cutaneous disorders are adversely affected by psychological stress (PS), but the responsible mechanisms are poorly understood. Recent studies have demonstrated that PS decreases epidermal proliferation and differentiation, impairs permeability barrier homeostasis, and decreases stratum corneum integrity. PS also increases the production of endogenous glucocorticoids (GC), and both systemic and topical GC cause adverse effects on epidermal structure and function similar to those observed with PS. We therefore hypothesized that increased endogenous GC in PS mediates its adverse cutaneous effects. To test this hypothesis, we used two independent approaches, administering either RU-486, a GC receptor antagonist that inhibits GC action, or antalarmin, a corticotropin-releasing hormone (CRH) receptor antagonist that prevents increased GC production in the face of PS. Inhibition of either GC action or production prevents the PS-induced decline in epidermal cell proliferation and differentiation, impairment in permeability barrier homeostasis, and decrease in stratum corneum (SC) integrity. Moreover, the pathophysiological basis for the abnormality in permeability barrier homeostasis; i.e., decreased lamellar body production and secretion, is restored toward normal by inhibition of GC action. Similarly, the mechanistic basis for the decrease in SC integrity, i.e., a reduction in corneodesmosomes, is also normalized by inhibition of GC action. Thus many of the adverse effects of PS on epidermal structure and function can be attributed to increased endogenous GC and conversely, approaches that either reduce GC production or action might benefit cutaneous disorders that are provoked or exacerbated by PS.


1996 ◽  
Vol 271 (3) ◽  
pp. R732-R737 ◽  
Author(s):  
L. E. Morrow ◽  
J. L. McClellan ◽  
J. J. Klir ◽  
M. J. Kluger

Glucocorticoids exert negative feedback in the anterior hypothalamus (AH) during lipopolysaccharide (LPS)-induced fevers, but the central location of their negative feedback during psychological stress-induced fever has not been determined. To confirm that glucocorticoid modulation of LPS fever occurs in the AH, adrenalectomized animals were injected intrahypothalamically with either 0.25 ng of corticosterone or vehicle followed by 50 micrograms/kg LPS intraperitoneally. Animals pretreated with corticosterone developed significantly smaller fevers (P = 0.007) than animals given vehicle. To determine if glucocorticoid modulation during psychological stress-induced fever may occur in the hippocampus, the fornix was transected to block hippocampal communication with the AH. This resulted in significantly larger psychological stress-induced fevers (P = 0.02) compared with sham-operated animals. There were no differences between these groups for LPS-induced fevers (P = 0.92). To determine where in the hippocampus glucocorticoids might exert their negative feedback during psychological stress, rats were microinjected with either 1 ng RU-38486 (a type II glucocorticoid receptor antagonist) or vehicle into the dentate gyrus prior to exposure to the open field. There were no differences between the psychological stress-induced fevers of the RU-38486- and vehicle-injected groups, supporting the hypothesis that these fevers are modulated elsewhere in the hippocampus. Our data support the hypothesis that glucocorticoids modulate LPS-induced fever in the AH and do not involve the hippocampus, and that psychological stress-induced fevers are modulated by neural connections between the hippocampus and the hypothalamus. The precise sites of action of glucocorticoid negative feedback on stress-induced fevers in the hippocampus (or other brain regions) are not yet known.


Planta Medica ◽  
2008 ◽  
Vol 74 (09) ◽  
Author(s):  
HY Jeon ◽  
JK Kim ◽  
JE Lee ◽  
WG Kim ◽  
SJ Lee

2019 ◽  
Author(s):  
Toshiro Seki ◽  
Atsushi Yasuda ◽  
Natsumi Kitajima ◽  
Masami Seki ◽  
Masayuki Oki ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document