Endogenous glucocorticoids released during acute toxic liver injury enhance hepatic IL-10 synthesis and release

1999 ◽  
Vol 276 (1) ◽  
pp. G199-G205 ◽  
Author(s):  
Mark G. Swain ◽  
Caroline Appleyard ◽  
John Wallace ◽  
Howard Wong ◽  
Tai Le

Endogenous glucocorticoids are known to play a role in the regulation of the inflammatory response possibly by modulating pro- and anti-inflammatory cytokine expression. We examined endogenous glucocorticoid secretion, hepatic damage, tumor necrosis factor-α (TNF-α), and interleukin-10 (IL-10) mRNA expression and release in rats treated with carbon tetrachloride (CCl4) after treatment with vehicle or a glucocorticoid receptor antagonist (RU-486). Rats treated with CCl4 demonstrated striking elevations of plasma corticosterone levels. Inhibition of endogenous glucocorticoid activity by pretreatment with the glucocorticoid receptor antagonist RU-486 resulted in augmented CCl4-mediated hepatotoxicity, as reflected by histology and serum transaminase levels, which were independent of alterations in serum TNF-α levels or hepatic mRNA expression. CCl4 treatment resulted in enhanced hepatic IL-10 mRNA expression and elevated serum IL-10 levels, which were markedly attenuated by glucocorticoid receptor blockade. In summary, significant endogenous glucocorticoid release occurs during acute toxic liver injury in the rat and suppresses the inflammatory response independent of effects on TNF-α but possibly by upregulating hepatic IL-10 production.

2000 ◽  
Vol 278 (2) ◽  
pp. R367-R372 ◽  
Author(s):  
Mitsuhiro Denda ◽  
Toru Tsuchiya ◽  
Peter M. Elias ◽  
Kenneth R. Feingold

Recent studies have shown that psychological stress can influence cutaneous barrier function, suggesting that this form of stress could trigger or aggravate skin disease. In the present study, we demonstrate that transfer of hairless mice to a different cage delays barrier recovery rates. Pretreatment with a phenothiazine sedative, chlorpromazine, before transfer of animals restored the kinetics of barrier recovery toward normal, suggesting that psychological stress is the basis for this alteration in barrier homeostasis. To determine the mechanism linking psychological stress to altered barrier recovery, we first demonstrated that plasma corticosterone levels increase markedly after transfer of animals to new cages and that pretreatment with chlorpromazine blocks this increase. Second, we demonstrated that the systemic administration of corticosterone delays barrier recovery. Finally, we demonstrated that pretreatment with the glucocorticoid receptor antagonist RU-486 blocks the delay in barrier recovery produced by systemic corticosterone, change of cage, or immobilization. These results suggest that psychological stress stimulates increased production of glucocorticoids, which, in turn, adversely affects permeability barrier homeostasis.


2009 ◽  
Vol 390 (10) ◽  
Author(s):  
Marie-Luise Berres ◽  
Christian Trautwein ◽  
Mirko Moreno Zaldivar ◽  
Petra Schmitz ◽  
Katrin Pauels ◽  
...  

Abstract The chemokine decoy receptor D6 is a promiscuous chemokine receptor lacking classical signaling functions. It negatively regulates inflammation by targeting CC chemokines to cellular internalization and degradation. Here we analyze the function of D6 in acute CCl4-induced liver damage in constitutive D6-/- and wild-type mice. The degree of liver injury was assessed by liver histology, serum transaminases, IL-6, and TNFα mRNA expression. Protein levels of D6 ligands (CCL2, CCL3, CCL5) and the non-D6-ligand CXCL9 within the livers were determined by ELISAs. The intrahepatic infiltration of immune cells was characterized by FACS. Genetic deletion of D6 led to prolonged liver damage after acute CCl4 administration. The augmented liver damage in D6-/- mice was associated with increased protein levels of intrahepatic inflammatory chemokines CCL2, CCL3, and CCL5 after 48 h, whereas CXCL9 was not different between knockout and wild-type mice. Functionally, increased intra-hepatic CC chemokine concentrations led to increased infiltration of CD45+ leukocytes, which were mainly identified as T and NK cells. In conclusion, the chemokine scavenger receptor D6 has a non-redundant role in acute toxic liver injury in vivo. These results support the importance of post-translational chemokine regulation and describe a new mechanism of immune modulation within the liver.


2021 ◽  
Author(s):  
He Tong ◽  
Li Wang ◽  
Kefan Zhang ◽  
Jing Shi ◽  
yongshuai Wu ◽  
...  

Abstract BackgroundThe phagocytic S100 protein, which mediates inflammatory responses and recruits inflammatory cells to sites of tissue damage, has long been known to be expressed in cells of myeloid origin. S100A6 belongs to the A group of the S100 protein family of Ca2+-binding proteins. Currently, the mechanism by which S100A6 mediates the inflammatory response and recruits inflammatory cells to the tissue injury site is unknown.MethodsA mouse model of carbon tetrachloride (CCl4)-induced acute liver injury (ALI) was established, and the transcriptomes of postinjury 2d and 5d liver tissues were sequenced. Enzyme-linked immunosorbent assay was used to determine the expression of inflammatory factors (TNF-α, IL-1β, IL-6, and IL-8) in the supernatant of the liver. Immunohistochemical analysis confirmed the expression of S100A6 in the liver cells. In vitro experiments proved the pro-inflammatory function of S100A6, and western blotting (WB) showed that the pathways were activated. The transwell experiment showed the infiltration of mononuclear/macrophages.ResultsWe found that S100A6 is highly expressed in liver cells during the most severe period of ALI, suggesting that it acts as an endogenous danger signal and has a pro-inflammatory function. In vitro, the mouse S100A6 recombinant protein was used to stimulate liver Kupffer cells to promote the secretion of TNF-α, IL-1β, IL-6, and IL-8. Further mechanistic experiments revealed that S100A6 acts as an endogenous danger signal to activate p-P38 and p-JNK downstream of the TLR4 and P65 pathways. Similarly, transcriptome data showed that S100A6 can activate the inflammatory response in Kuffer cells. WB revealed that S100A6 had no significant effect on cell apoptosis. To continue to explore the mechanism of monocyte/macrophage infiltration, we found that TNF-α stimulates liver cells as the main source of CCL2. TNF-α can initiate the p-P38 and p-JNK pathways of liver cells to produce CCL2, thereby recruiting the infiltration of mononuclear/macrophages. ConclusionsTaken together, S100A6 is an endogenous danger signal that mediates inflammatory responses and recruits inflammatory cells to sites of tissue damage.


2001 ◽  
Vol 280 (5) ◽  
pp. G1005-G1012 ◽  
Author(s):  
Hiroshi Kono ◽  
Ivan Rusyn ◽  
Takehiko Uesugi ◽  
Shunhei Yamashina ◽  
Henry D. Connor ◽  
...  

The oxidant source in alcohol-induced liver disease remains unclear. NADPH oxidase (mainly in liver Kupffer cells and infiltrating neutrophils) could be a potential free radical source. We aimed to determine if NADPH oxidase inhibitor diphenyleneiodonium sulfate (DPI) affects nuclear factor-κB (NF-κB) activation, liver tumor necrosis factor-α (TNF-α) mRNA expression, and early alcohol-induced liver injury in rats. Male Wistar rats were fed high-fat liquid diets with or without ethanol (10–16 g · kg−1 · day−1) continuously for up to 4 wk, using the Tsukamoto-French intragastric enteral feeding protocol. DPI or saline vehicle was administered by subcutaneous injection for 4 wk. Mean urine ethanol concentrations were similar between the ethanol- and ethanol plus DPI-treated groups. Enteral ethanol feeding caused severe fat accumulation, mild inflammation, and necrosis in the liver (pathology score, 4.3 ± 0.3). In contrast, DPI significantly blunted these changes (pathology score, 0.8 ± 0.4). Enteral ethanol administration for 4 wk also significantly increased free radical adduct formation, NF-κB activity, and TNF-α expression in the liver. DPI almost completely blunted these parameters. These results indicate that DPI prevents early alcohol-induced liver injury, most likely by inhibiting free radical formation via NADPH oxidase, thereby preventing NF-κB activation and TNF-α mRNA expression in the liver.


2018 ◽  
Vol 19 (11) ◽  
pp. 3697 ◽  
Author(s):  
Lin Zhang ◽  
Xiuying Wang ◽  
Shaokui Chen ◽  
Shuhui Wang ◽  
Zhixiao Tu ◽  
...  

This study was conducted to investigate whether medium-chain triglycerides (MCTs) attenuated lipopolysaccharide (LPS)-induced liver injury by down-regulating necroptotic and inflammatory signaling pathways. A total of 24 pigs were randomly allotted to four treatments in a 2 × 2 factorial design including diet (0 and 4% MCTs) and immunological challenge (saline and LPS). After three weeks of feeding with or without 4% MCTs, pigs were challenged with saline or LPS. MCTs led to a significant increase in eicosapentaenoic acid, docosahexaenoic acid and total (n-3) polyunsaturated fatty acid concentrations. MCTs attenuated LPS-induced liver injury as indicated by an improvement in liver histomorphology and ultrastructural morphology of hepatocytes, a reduction in serum alanine aminotransferase and alkaline phosphatase activities as well as an increase in claudin-1 protein expression. In addition, MCTs also reduced serum tumor necrosis factor-α (TNF-α), interleukin (IL)-1β and IL-6 concentrations, liver TNF-α and IL-1β mRNA expression and protein concentrations and enhanced liver heat shock protein 70 protein expression in LPS-challenged pigs. Moreover, MCTs decreased mRNA expression of receptor-interacting serine/threonine-protein kinase (RIP) 3, mixed-lineage kinase domain-like protein (MLKL) and phosphoglycerate mutase 5 and inhibited MLKL phosphorylation in the liver. Finally, MCTs decreased liver mRNA expression of toll-like receptor (TLR) 4, nucleotide-binding oligomerization domain protein (NOD) 1 and multiple downstream signaling molecules. MCTs also suppressed LPS-induced p38 mitogen-activated protein kinase (MAPK) phosphorylation and increased extracellular signal-related kinase 1/2 phosphorylation in the liver. These results indicated that MCTs are capable of attenuating LPS-induced liver damage by suppressing hepatic necroptotic (RIP1/RIP3/MLKL) and inflammatory (TLR4/NOD1/p38 MAPK) signaling pathways.


2021 ◽  
Author(s):  
Jun Zhou ◽  
Yuhui Que ◽  
Lihua Pan ◽  
Xu Li ◽  
Chao Zhu ◽  
...  

Abstract Supervillin (SVIL), the largest member of villin/gelsolin family, is an actin-binding and membrane-associated protein, that can also be localized to the nucleus. It has been reported that the mRNA expression of SVIL in neutrophils could be increased by lipopolysaccharide (LPS), but the underlying mechanisms remain unknown. Moreover, SVIL was also observed to be involved in the regulation of macrophages’ movement. However, it is not clear whether SVIL is involved in the LPS-induced inflammatory response in macrophages. This work was to investigate the underlying molecular mechanisms of LPS regulating SVIL expression in macrophages and hence the possible role of SVIL in LPS-induced inflammation. Our data showed that in THP-1-derived macrophages, LPS stimulation significantly increased SVIL mRNA and protein expression. Inhibition of TLR4 by Resatorvid (Res) completely reversed the expression of SVIL and inflammatory cytokines (IL-6, IL-1β and TNF-α) induced by LPS. Additionally, ERK1/2 and NF-κB inhibitors (U0126 and BAY) significantly reduced SVIL and IL-6, IL-1β & TNF-α expression. Furthermore, down-regulation of SVIL by SVIL-specific shRNA significantly attenuated the expression of IL-6, IL-1β & TNF-α induced by LPS. Taken together, as a downstream molecule of TLR4/NF-κB and ERK1/2, SVIL was involved in the inflammatory response of LPS-induced elevated IL-6, IL-1β and TNF-α in macrophages.


2021 ◽  
Vol 2021 ◽  
pp. 1-17
Author(s):  
Jing Fan ◽  
Miao He ◽  
Chuan-Jiang Wang ◽  
Mu Zhang

Background. Liver macrophages play an important regulatory role in the inflammatory response of liver injury after severe infection. Interleukin- (IL-) 27 is an inflammatory cytokine that plays an important role in diseases caused by bacterial infection. However, the relationship between IL-27 and liver macrophages in liver injury after severe infection is not yet clear. Methods. A cecal ligation puncture (CLP) model was established in wild-type (WT) and IL-27 receptor- (WSX-1-) deficient (IL-27r-/-) mice, and recombinant IL-27 and gadolinium chloride (GdCl3) were injected into WT mice in the designated groups. The serum and liver IL-27, IL-6, tumor necrosis factor alpha (TNF-α), and IL-1β expression levels were evaluated by ELISA, quantitative PCR, or Western blotting; serum ALT and AST were detected by detection kits; and the severity of liver damage was evaluated by hematoxylin and eosin staining and the TUNEL assay of the liver tissue from the different groups. Liver macrophage polarization was evaluated by immunofluorescence. In addition, the polarization of peritoneal macrophage was evaluated by flow cytometry. Results. The serum and liver IL-27 expression levels were elevated in WT mice after CLP-induced severe infection, which were consistent with the changes in HE scores in the liver tissue. The levels of serum ALT, AST, liver IL-6, TNF-α, and IL-1β mRNA and liver pathological injury scores were further increased when pretreated with recombinant IL-27 in WT mice, but these levels were decreased in IL-27r−/− mice after CLP-induced severe infection compared to WT mice. In WT mice pretreated with GdCl3, liver pathological scores, serum ALT and AST, TUNEL-positive cell proportion from liver tissues, liver IL-27 expression, and the liver macrophages M1 polarization proportion decreased after CLP; however, the serum IL-27, IL-6, TNF-α, and IL-1β levels and the pathological lung and kidney scores were not significantly changed. When supplemented with exogenous IL-27, the liver pathological scores, serum ALT, AST, TUNEL-positive cell proportion of liver tissues, liver IL-27 expression, and the liver macrophage M1 polarization proportion increased. The in vitro, IL-27 expression increased in peritoneal macrophages when stimulated with LPS. Recombinant IL-27 together with LPS promoted the elevations in IL-6, TNF-α, and IL-1β levels in supernatant and the M1 polarization of peritoneal macrophages. Conclusion. IL-27 is an important cytokine in the inflammatory response to liver injury after severe infection. The reduction of liver injury by gadolinium chloride in severe infection mice models may relate to the inhibition of liver IL-27 production. These changes may be mainly related to the decrease of liver macrophages M1 polarization. IL-27 may have a positive feedback on these macrophages.


Sign in / Sign up

Export Citation Format

Share Document