Functional morphology of the avian medullary cone

2000 ◽  
Vol 279 (5) ◽  
pp. R1722-R1730 ◽  
Author(s):  
Giovanni Casotti ◽  
Kimberly K. Lindberg ◽  
Eldon J. Braun

The organization of the renal medulla of the Gambel's quail, Callipepla gambelii, kidney was examined to determine the number of loops of Henle and collecting ducts and the surface area occupied by the different nephron segments as a function of distance down the medullary cones. Eleven medullary cones were dissected from the kidneys of four birds, and the tissue was processed and sectioned for light microscopy. In addition, individual nephrons were isolated on which total loop thin descending segment and thick prebend segment lengths were measured. The results show no correlation between the absolute number of loops of Henle and the length of the medullary cones. The number of thick and thin limbs of Henle and collecting ducts decrease exponentially with distance toward the apex of the cones and the rate of decrease is similar for cones of different lengths. Initially there is a rapid decrease in the number of thin limbs of Henle, indicating that most nephrons do not penetrate the cones a great distance. Thick descending limbs of Henle (prebend segment) ranged in length from 50 to 770 μm, and there was little correlation with the total length of the loop of Henle. However, the length of the thin limb of Henle correlated well with total loop length. The cell surface areas of the limbs of the loop of Henle and the collectng ducts decreased toward the apex of the cones.

1988 ◽  
Vol 255 (3) ◽  
pp. F500-F512 ◽  
Author(s):  
E. J. Braun ◽  
P. R. Reimer

The ultrastructural detail of the avian loop of Henle was examined, and comparisons were made to the loop of Henle of mammalian kidneys. Birds are the only group of vertebrates other than mammals that have the capability of elaborating a urine more concentrated than the plasma. Therefore, a comparison of the principal tubular element responsible for this phenomenon was made. Gambel's quail (Callipepla gambelii) were used as experimental animals. The animals were anesthetized with Inactin, and the kidneys were perfused-fixed in situ. The results show that the transition from the pars recta of the proximal tubule to the thin descending limb of Henle's loop (DLLH) is very abrupt. The upper part of the DLLH appears to be composed of type 2 and the lower part of type 3 epithelia, a condition somewhat similar to mammals. The junctions of the upper portion of DLLH are of the zonula adherens type and those of the lower portion of DLLH are of the macula adherens type. The epithelium of the loop always thickens before the formation of the hairpin turn with the thick descending limb being approximately 15% of the total DLLH. The structure of the avian renal medulla, in particular that of the loop of Henle, appears to parallel quite closely that postulated by the original formulation of the countercurrent multiplier system for the mammalian kidney.


2007 ◽  
Vol 293 (1) ◽  
pp. F408-F415 ◽  
Author(s):  
Un Sil Jeon ◽  
Ki-Hwan Han ◽  
Soo-Hyun Park ◽  
Sang Do Lee ◽  
Mee Rie Sheen ◽  
...  

Hypokalemia causes a significant decrease in the tonicity of the renal medullary interstitium in association with reduced expression of sodium transporters in the distal tubule. We asked whether hypokalemia caused downregulation of the tonicity-responsive enhancer binding protein (TonEBP) transcriptional activator in the renal medulla due to the reduced tonicity. We found that the abundance of TonEBP decreased significantly in the outer and inner medullas of hypokalemic rats. Underlying mechanisms appeared different in the two regions because the abundance of TonEBP mRNA was lower in the outer medulla but unchanged in the inner medulla. Immunohistochemical examination of TonEBP revealed cell type-specific differences. TonEBP expression decreased dramatically in the outer and inner medullary collecting ducts, thick ascending limbs, and interstitial cells. In the descending and ascending thin limbs, TonEBP abundance decreased modestly. In the outer medulla, TonEBP shifted to the cytoplasm in the descending thin limbs. As expected, transcription of aldose reductase, a target of TonEBP, was decreased since the abundance of mRNA and protein was reduced. Downregulation of TonEBP appeared to have also contributed to reduced expression of aquaporin-2 and UT-A urea transporters in the renal medulla. In cultured cells, expression and activity of TonEBP were not affected by reduced potassium concentrations in the medium. These data support the view that medullary tonicity regulates expression and nuclear distribution of TonEBP in the renal medulla in cell type-specific manners.


1994 ◽  
Vol 42 (5) ◽  
pp. 621-626 ◽  
Author(s):  
N Ma ◽  
E Aoki ◽  
R Semba

Biochemical studies have revealed considerable amounts of free amino acids in the kidney. We examined the intrarenal distribution of three amino acids (aspartate, glutamate, and taurine) in the rat kidney with an immunoperoxidase method. In the renal cortex, all three amino acids were concentrated in the renal corpuscles and in the epithelia of the collecting tubules. Immunostaining of the collecting tubules was more intense in the principal cells than in the intercalated cells. The distal convoluted tubules were also immunostained with aspartate- and glutamate- specific antibodies but not with the taurine-specific antibody. In the renal medulla, the immunoreactivity specific for aspartate and for glutamate was similar; it was weak in the thick portion of the loop of Henle and strong in the collecting tubules. Immunoreactivity specific for taurine was restricted to regions within the epithelia of the thin portion of the loop of Henle and the collecting tubules. The significance of the accumulated amino acids as osmoregulatory agents is discussed.


1996 ◽  
Vol 270 (4) ◽  
pp. F604-F613 ◽  
Author(s):  
J. R. Asplin ◽  
N. S. Mandel ◽  
F. L. Coe

We have used published rat micropuncture data to construct a matrix of ion concentrations along the rat nephron. With an iterative computer model of known ion interactions, we calculated relative supersaturation ratios in all nephron segments. The collecting ducts and urine showed expected supersaturation with stone-forming salts. Fluid in the thin segment of the loop of Henle may be supersaturated with calcium carbonate and calcium phosphate under certain conditions. Because calculations cannot predict the actual course of crystallization, we made solutions to mimic, in vitro, presumed conditions in the loop of Henle. The solid phases that formed were analyzed by X-ray powder diffraction, electron microprobe, and infrared spectroscopy. All samples were identified as poorly crystallized or immature apatite. The descending limb of Henle's loop creates a unique condition as it extracts water but not sodium, bicarbonate, calcium, or phosphate, giving a calcium concentration at the bend of 3 mM, pH 7.4, and a phosphate concentration that varies from 0.8 to 48 mM, depending on parathyroid hormone and dietary phosphate. We conclude that conditions in the thin segment potentially could create a solid calcium phosphate phase, which may initiate nucleation of calcium oxalate salts in the collecting ducts, potentiating nephrolithiasis and nephrocalcinosis.


2007 ◽  
Vol 293 (6) ◽  
pp. F1858-F1864 ◽  
Author(s):  
Qi Cai ◽  
Matthew R. McReynolds ◽  
Maggie Keck ◽  
Kevin A. Greer ◽  
James B. Hoying ◽  
...  

Aquaporin (AQP) 1 null mice have a defect in the renal concentrating gradient because of their inability to generate a hyperosmotic medullary interstitium. To determine the effect of vasopressin on renal medullary gene expression, in the absence of high local osmolarity, we infused 1-deamino-8-d-arginine vasopressin (dDAVP), a V2 receptor (V2R)-specific agonist, in AQP1 null mice for 7 days. cDNA microarray analysis was performed on the renal medullary tissue, and 5,140 genes of the possible 12,000 genes on the array were included in the analysis. In the renal medulla of AQP1 null mice, 245 transcripts were identified as increased by dDAVP infusion and 200 transcripts as decreased (1.5-fold or more). Quantitative real-time PCR measurements confirmed the increases seen for cyclin D1, early growth response gene 1, and activating transcription factor 3, genes associated with changes in cell cycle/growth. Changes in mRNA expression were correlated with changes in protein expression by semiquantitative immunoblotting; cyclin D1 and ATF3 were increased significantly in abundance following dDAVP infusion in the renal medulla of AQP1 null mice (161 and 461%, respectively). A significant increase in proliferation of medullary collecting ducts cells, following V2R activation, was identified by proliferating cell nuclear antigen immunohistochemistry; colocalization studies with AQP2 indicated that the increase in proliferation was primarily observed in principal cells of the inner medullary collecting duct (IMCD). V2R activation, via dDAVP, increased AQP2 and AQP3 protein abundance in the cortical collecting ducts of AQP1 null mice. However, V2R activation did not increase AQP2 protein abundance in the IMCD of AQP1 null mice.


2019 ◽  
Vol 316 (1) ◽  
pp. F195-F203 ◽  
Author(s):  
Cesar A. Romero ◽  
Nitin Kumar ◽  
Pablo Nakagawa ◽  
Morel E. Worou ◽  
Tang-Dong Liao ◽  
...  

The antifibrotic peptide N-acetyl-seryl-aspartyl-lysyl-proline (Ac-SDKP) is released from thymosin-β4 (Tβ4) by the meprin-α and prolyl oligopeptidase (POP) enzymes and is hydrolyzed by angiotensin-converting enzyme (ACE). Ac-SDKP is present in urine; however, it is not clear whether de novo tubular release occurs or if glomerular filtration is the main source. We hypothesized that Ac-SDKP is released into the lumen of the nephrons and that it exerts an antifibrotic effect. We determined the presence of Tβ4, meprin-α, and POP in the kidneys of Sprague-Dawley rats. The stop-flow technique was used to evaluate Ac-SDKP formation in different nephron segments. Finally, we decreased Ac-SDKP formation by inhibiting the POP enzyme and evaluated the long-term effect in renal fibrosis. The Tβ4 precursor and the releasing enzymes meprin-α and POP were expressed in the kidneys. POP enzyme activity was almost double that in the renal medulla compared with the renal cortex. With the use of the stop-flow technique, we detected the highest Ac-SDKP concentrations in the distal nephron. The infusion of a POP inhibitor into the kidney decreased the amount of Ac-SDKP in distal nephron segments and in the proximal nephron to a minor extent. An ACE inhibitor increased the Ac-SDKP content in all nephron segments, but the increase was highest in the distal portion. The chronic infusion of a POP inhibitor increased kidney medullary fibrosis, which was prevented by Ac-SDKP. We conclude that Ac-SDKP is released by the nephron and is part of an important antifibrotic system in the kidney.


eLife ◽  
2017 ◽  
Vol 6 ◽  
Author(s):  
Max Werth ◽  
Kai M Schmidt-Ott ◽  
Thomas Leete ◽  
Andong Qiu ◽  
Christian Hinze ◽  
...  

Although most nephron segments contain one type of epithelial cell, the collecting ducts consists of at least two: intercalated (IC) and principal (PC) cells, which regulate acid-base and salt-water homeostasis, respectively. In adult kidneys, these cells are organized in rosettes suggesting functional interactions. Genetic studies in mouse revealed that transcription factor Tfcp2l1 coordinates IC and PC development. Tfcp2l1 induces the expression of IC specific genes, including specific H+-ATPase subunits and Jag1. Jag1 in turn, initiates Notch signaling in PCs but inhibits Notch signaling in ICs. Tfcp2l1 inactivation deletes ICs, whereas Jag1 inactivation results in the forfeiture of discrete IC and PC identities. Thus, Tfcp2l1 is a critical regulator of IC-PC patterning, acting cell-autonomously in ICs, and non-cell-autonomously in PCs. As a result, Tfcp2l1 regulates the diversification of cell types which is the central characteristic of 'salt and pepper' epithelia and distinguishes the collecting duct from all other nephron segments.


1999 ◽  
Vol 276 (4) ◽  
pp. F552-F558 ◽  
Author(s):  
Momono Yoshikawa ◽  
Shinichi Uchida ◽  
Atsushi Yamauchi ◽  
Akiko Miyai ◽  
Yujiro Tanaka ◽  
...  

To gain insight into the physiological role of a kidney-specific chloride channel, CLC-K2, the exact intrarenal localization was determined by in situ hybridization. In contrast to the inner medullary localization of CLC-K1, the signal of CLC-K2 in our in situ hybridization study was highly evident in the superficial cortex, moderate in the outer medulla, and absent in the inner medulla. To identify the nephron segments where CLC-K2 mRNA was expressed, we performed in situ hybridization of CLC-K2 and immunohistochemistry of marker proteins (Na+/Ca2+exchanger, Na+-Cl−cotransporter, aquaporin-2 water channel, and Tamm-Horsfall glycoprotein) in sequential sections of a rat kidney. Among the tubules of the superficial cortex, CLC-K2 mRNA was highly expressed in the distal convoluted tubules, connecting tubules, and cortical collecting ducts. The expression of CLC-K2 in the outer and inner medullary collecting ducts was almost absent. In contrast, a moderate signal of CLC-K2 mRNA was observed in the medullary thick ascending limb of Henle’s loop, but the signal in the cortical thick ascending limb of Henle’s loop was low. These results clearly demonstrated that CLC-K2 was not colocalized with CLC-K1 and that its localization along the nephron segments was relatively broad compared with that of CLC-K1.


1995 ◽  
Vol 268 (6) ◽  
pp. F1124-F1131 ◽  
Author(s):  
W. S. Lee ◽  
S. C. Hebert

The inwardly rectifying, ATP-sensitive K+ channel (ROMK) was localized by in situ hybridization in the rat kidney. Tissue in situ hybridization revealed that transcripts encoding the ROMK channel were expressed predominantly in cortical and outer medullary nephron segments. The localization of ROMK mRNA to specific nephron segments was assessed by hybridization of isolated nephron segments with an ROMK-specific probe (single segment in situ hybridization). ROMK mRNA was present in cortical and medullary thick ascending limb, distal tubule, and cortical and outer medullary collecting ducts, but not in proximal tubule. A weak hybridization was observed with inner medullary collecting ducts. To confirm these results, serial cryosections were alternatively stained by hybridization histochemistry for ROMK mRNA or by immunocytochemistry using antibodies specific for S1, S2, or S3 proximal tubular segments. Tubular cells that displayed immunoreactivity with the proximal tubular segment-specific antibodies showed little, if any, ROMK message. In addition, using an in situ hybridization and immunocytochemistry double-labeling technique, ROMK transcripts and vitamin D-dependent calcium-binding protein were shown to colocalize to the distal tubule (distal convoluted tubule and connecting tubule). The overall nephron localization of ROMK mRNA shown in these studies is consistent with the possibility that this novel channel may represent the low-conductance ATP-sensitive K+ channel that has been identified in apical membranes of thick limb and collecting duct segments and is believed to participate in K+ secretion.


Sign in / Sign up

Export Citation Format

Share Document