scholarly journals Impact of sex and chronic resistance training on human patellar tendon dry mass, collagen content, and collagen cross-linking

2009 ◽  
Vol 296 (1) ◽  
pp. R119-R124 ◽  
Author(s):  
Jennifer K. LeMoine ◽  
Jonah D. Lee ◽  
Todd A. Trappe

Collagen content and cross-linking are believed to be major determinants of tendon structural integrity and function. Sex and chronic resistance training have been shown to alter tendon function and may also alter the key structural features of tendon. Patellar tendon biopsies were taken from untrained men [ n = 8, 1 repetition maximum (RM) = 53 ± 3 kg], untrained women ( n = 8, 1 RM = 29 ± 2 kg), and resistance-trained (10 ± 1 yr of training) men ( n = 8, 1 RM = 71 ± 6 kg). Biopsies were analyzed for dry mass, collagen content, and collagen cross-linking (hydroxylysylpyridinoline). We hypothesized that these elements of tendon structure would be lower in women than men, whereas chronic resistance training would increase these parameters in men. Tendon dry mass was significantly lower in women than men (343 ± 5 vs. 376 ± 8 μg dry mass/mg tendon wet wt, P < 0.01) and was not influenced by chronic resistance training ( P > 0.05). The lower tendon dry mass in women tended to reduce ( P = 0.08) collagen content per tendon wet weight. Collagen content of the tendon dry mass was not influenced by sex or resistance training ( P > 0.05). Similarly, cross-linking of collagen was unaltered ( P > 0.05) by sex or training. Although sex alters the water content of patellar tendon tissue, any changes in tendon function with sex or chronic resistance training in men do not appear to be explained by alterations in collagen content or cross-linking of collagen within the dry mass component of the tendon.

1995 ◽  
Vol 269 (3) ◽  
pp. H863-H868 ◽  
Author(s):  
S. Kato ◽  
F. G. Spinale ◽  
R. Tanaka ◽  
W. Johnson ◽  
G. Cooper ◽  
...  

The fibrillar collagen network is postulated to be a primary determinant of left ventricular diastolic stiffness. This hypothesis was tested by examining the structural and physiological effects of a reduction in fibrillar collagen content and cross-linking in the intact left ventricle. Collagen cross-linking was inhibited by treating five normal adult pigs with beta-aminopropionitrile (BAPN; 10 g/day po) for 6 wk; five normal untreated pigs served as controls. Left ventricular volume, mass, and function were determined by simultaneous echocardiography and catheterization. Chamber stiffness, defined by pressure vs. volume data, and myocardial stiffness, defined by stress vs. dimension data, were determined from variably loaded beats during dextran infusion. Collagen distribution (% area) and integrity (% confluence) were determined by light microscopy. Collagen content was measured by hydroxyproline assay, and collagen cross-linking was measured by salt extraction. BAPN decreased collagen distribution (% area decreased from 12 +/- 1% in control to 7 +/- 1% in BAPN, P < 0.05), collagen integrity (% confluence decreased from 8 +/- 1% in control to 4 +/- 1% in BAPN, P < 0.05), collagen content (from 36 +/- 2 mg/g dry wt in control to 27 +/- 2 mg/g dry wt in BAPN, P < 0.05), and collagen cross-linking (extractable collagen increased from 21 +/- 2% in control to 28 +/- 2% in BAPN, P < 0.05). BAPN decreased chamber stiffness (0.13 +/- 0.02 in control to 0.06 +/- 0.01 in BAPN, P < 0.05) and myocardial stiffness (10.4 +/- 0.5 in control to 6.6 +/- 0.5 in BAPN, P < 0.05).(ABSTRACT TRUNCATED AT 250 WORDS)


2013 ◽  
Vol 114 (8) ◽  
pp. 998-1008 ◽  
Author(s):  
Mette Hansen ◽  
Christian Couppe ◽  
Christina S. E. Hansen ◽  
Dorthe Skovgaard ◽  
Vuokko Kovanen ◽  
...  

Sex differences exist with regards to ligament and tendon injuries. Lower collagen synthesis has been observed in exercising women vs. men, and in users of oral contraceptives (OC) vs. nonusers, but it is unknown if OC will influence tendon biomechanics of women undergoing regular training. Thirty female athletes (handball players, 18–30 yr) were recruited: 15 long-term users of OC (7.0 ± 0.6 yr) and 15 nonusers (>5 yr). Synchronized values of patellar tendon elongation (obtained by ultrasonography) and tendon force were sampled during ramped isometric knee extensor maximum voluntary contraction to estimate mechanical tendon properties. Furthermore, tendon cross-sectional area and length were measured from MRI images, and tendon biopsies were obtained for analysis of tendon fibril characteristics and collagen cross-linking. Overall, no difference in tendon biomechanical properties, tendon fibril characteristics, or collagen cross-linking was observed between the OC users and nonusers, or between the different phases of the menstrual cycle. In athletes, tendon cross-sectional area in the preferred jumping leg tended to be larger than that in the contralateral leg ( P = 0.09), and a greater absolute ( P = 0.01) and normalized tendon stiffness ( P = 0.02), as well as a lower strain ( P = 0.04), were observed in the jumping leg compared with the contralateral leg. The results indicate that long-term OC use or menstrual phases does not influence structure or mechanical properties of the patellar tendon in female team handball athletes.


2009 ◽  
Vol 107 (3) ◽  
pp. 880-886 ◽  
Author(s):  
C. Couppé ◽  
P. Hansen ◽  
M. Kongsgaard ◽  
V. Kovanen ◽  
C. Suetta ◽  
...  

Age-related loss in muscle mass and strength impairs daily life function in the elderly. However, it remains unknown whether tendon properties also deteriorate with age. Cross-linking of collagen molecules provides structural integrity to the tendon fibrils and has been shown to change with age in animals but has never been examined in humans in vivo. In this study, we examined the mechanical properties and pyridinoline and pentosidine cross-link and collagen concentrations of the patellar tendon in vivo in old (OM) and young men (YM). Seven OM (67 ± 3 years, 86 ± 10 kg) and 10 YM (27 ± 2 years, 81 ± 8 kg) with a similar physical activity level (OM 5 ± 6 h/wk, YM 5 ± 2 h/wk) were examined. MRI was used to assess whole tendon dimensions. Tendon mechanical properties were assessed with the use of simultaneous force and ultrasonographic measurements during ramped isometric contractions. Percutaneous tendon biopsies were taken and analyzed for hydroxylysyl pyridinoline (HP), lysyl pyridinoline (LP), pentosidine, and collagen concentrations. We found no significant differences in the dimensions or mechanical properties of the tendon between OM and YM. Collagen concentrations were lower in OM than in YM (0.49 ± 0.27 vs. 0.73 ± 0.14 mg/mg dry wt; P < 0.05). HP concentrations were higher in OM than in YM (898 ± 172 vs. 645 ± 183 mmol/mol; P < 0.05). LP concentrations were higher in OM than in YM (49 ± 38 vs. 16 ± 8 mmol/mol; P < 0.01), and pentosidine concentrations were higher in OM than in YM (73 ± 13 vs. 11 ± 2 mmol/mol; P < 0.01). These cross-sectional data raise the possibility that age may not appreciably influence the dimensions or mechanical properties of the human patellar tendon in vivo. Collagen concentration was reduced, whereas both enzymatic and nonenzymatic cross-linking of concentration was elevated in OM vs. in YM, which may be a mechanism to maintain the mechanical properties of tendon with aging.


2019 ◽  
Vol 48 (5) ◽  
pp. 030006051989130
Author(s):  
Honglin Yang ◽  
Bingqing Xie ◽  
Yue Wang ◽  
Yayun Cui ◽  
Hui Yang ◽  
...  

Objectives Proanthocyanidins (PAs) have been widely used as effective agents for dentin collagen cross-linking to enhance the biomechanics and biostability of dentin in vitro. However, the effects and protective mechanisms of various tea root-derived PA components on dentin remain undefined. This study evaluated the effects of these tea root-derived PA components on dentin biomechanics and biostability. Methods In this study, ethyl acetate and n-butyl alcohol were used to extract PAs with different degrees of polymerization from tea roots; the effects of these PA extracts on dentin were evaluated. Results Dentin was treated with glutaraldehyde, ethyl acetate, n-butyl alcohol, or water. PAs with a high degree of polymerization, extracted using n-butyl alcohol, were able to more effectively improve dentin collagen cross-linking, increase resistance to bacterial collagenase digestion, and enhance dentin elasticity, relative to treatment with glutaraldehyde or PAs with a low degree of polymerization (extracted using ethyl acetate). Additionally, treatment with aqueous extract of tea roots was detrimental to dentin stability and function. Conclusions PAs with a high degree of polymerization were effective for dentin protection and restoration in vitro, suggesting clinical treatment potential for tea root-derived PAs.


2019 ◽  
Vol 19 (1) ◽  
Author(s):  
Christian S. Eriksen ◽  
Rene B. Svensson ◽  
Anne T. Gylling ◽  
Christian Couppé ◽  
S. Peter Magnusson ◽  
...  

2010 ◽  
Vol 108 (1) ◽  
pp. 47-52 ◽  
Author(s):  
Philip Hansen ◽  
Bjarki Thor Haraldsson ◽  
Per Aagaard ◽  
Vuokko Kovanen ◽  
Nicholas C. Avery ◽  
...  

The human patellar tendon is frequently affected by tendinopathy, but the etiology of the condition is not established, although differential loading of the anterior and posterior tendon may be associated with the condition. We hypothesized that changes in fibril morphology and collagen cross-linking would parallel differences in material strength between the anterior and posterior tendon. Tendon fascicles were obtained from elective ACL surgery patients and tested micromechanically. Transmission electron microscopy was used to assess fibril morphology, and collagen cross-linking was determined by HPLC and calorimetry. Anterior fascicles were markedly stronger (peak stress: 54.3 ± 21.2 vs. 39.7 ± 21.3 MPa; P < 0.05) and stiffer (624 ± 232 vs. 362 ± 170 MPa; P < 0.01) than posterior fascicles. Notably, mature pyridinium type cross-links were less abundant in anterior fascicles (hydroxylysylpyridinoline: 0.859 ± 0.197 vs. 1.416 ± 0.250 mol/mol, P = 0.001; lysylpyridinoline: 0.023 ± 0.006 vs. 0.035 ± 0.006 mol/mol, P < 0.01), whereas pentosidine and pyrrole concentrations showed no regional differences. Fibril diameters tended to be larger in anterior fascicles (7.819 ± 2.168 vs. 4.897 ± 1.434 nm2; P = 0.10). Material properties did not appear closely related to cross-linking or fibril morphology. These findings suggest region-specific differences in mechanical, structural, and biochemical properties of the human patellar tendon.


2013 ◽  
Vol 27 (S1) ◽  
Author(s):  
Christian Couppé ◽  
René Brüggebusch Svensson ◽  
Jean‐Francois Grosset ◽  
Vuokko Kovanen ◽  
Anders Karlsen ◽  
...  

2009 ◽  
Vol 107 (2) ◽  
pp. 523-530 ◽  
Author(s):  
O. R. Seynnes ◽  
R. M. Erskine ◽  
C. N. Maganaris ◽  
S. Longo ◽  
E. M. Simoneau ◽  
...  

To obtain a better understanding of the adaptations of human tendon to chronic overloading, we examined the relationships between these adaptations and the changes in muscle structure and function. Fifteen healthy male subjects (20 ± 2 yr) underwent 9 wk of knee extension resistance training. Patellar tendon stiffness and modulus were assessed with ultrasonography, and cross-sectional area (CSA) was determined along the entire length of the tendon by using magnetic resonance imaging. In the quadriceps muscles, architecture and volume measurements were combined to obtain physiological CSA (PCSA), and maximal isometric force was recorded. Following training, muscle force and PCSA increased by 31% ( P < 0.0001) and 7% ( P < 0.01), respectively. Tendon CSA increased regionally at 20–30%, 60%, and 90–100% of tendon length (5–6%; P < 0.05), and tendon stiffness and modulus increased by 24% ( P < 0.001) and 20% ( P < 0.01), respectively. Although none of the tendon adaptations were related to strength gains, we observed a positive correlation between the increase in quadriceps PCSA and the increases in tendon stiffness ( r = 0.68; P < 0.01) and modulus ( r = 0.75; P < 0.01). Unexpectedly, the increase in muscle PCSA was inversely related to the distal and the mean increases in tendon CSA (in both cases, r = −0.64; P < 0.05). These data suggest that, following short-term resistance training, changes in tendon mechanical and material properties are more closely related to the overall loading history and that tendon hypertrophy is driven by other mechanisms than those eliciting tendon stiffening.


Diabetes ◽  
1985 ◽  
Vol 34 (7) ◽  
pp. 703-705 ◽  
Author(s):  
J. R. Williamson ◽  
K. Chang ◽  
E. Rowold ◽  
J. Marvel ◽  
M. Tomlinson ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document