A tasty morsel: the role of the dorsal vagal complex in the regulation of food intake and swallowing. Focus on “BDNF/TrkB signaling interacts with GABAergic system to inhibit rhythmic swallowing in the rat,” by Bariohay et al.

2008 ◽  
Vol 295 (4) ◽  
pp. R1048-R1049 ◽  
Author(s):  
E. Fiona Bailey
2022 ◽  
Vol 23 (2) ◽  
pp. 960
Author(s):  
Jean-Denis Troadec ◽  
Stéphanie Gaigé ◽  
Manon Barbot ◽  
Bruno Lebrun ◽  
Rym Barbouche ◽  
...  

The avoidance of being overweight or obese is a daily challenge for a growing number of people. The growing proportion of people suffering from a nutritional imbalance in many parts of the world exemplifies this challenge and emphasizes the need for a better understanding of the mechanisms that regulate nutritional balance. Until recently, research on the central regulation of food intake primarily focused on neuronal signaling, with little attention paid to the role of glial cells. Over the last few decades, our understanding of glial cells has changed dramatically. These cells are increasingly regarded as important neuronal partners, contributing not just to cerebral homeostasis, but also to cerebral signaling. Our understanding of the central regulation of energy balance is part of this (r)evolution. Evidence is accumulating that glial cells play a dynamic role in the modulation of energy balance. In the present review, we summarize recent data indicating that the multifaceted glial compartment of the brainstem dorsal vagal complex (DVC) should be considered in research aimed at identifying feeding-related processes operating at this level.


Endocrinology ◽  
2000 ◽  
Vol 141 (4) ◽  
pp. 1332-1337 ◽  
Author(s):  
Diana L. Williams ◽  
Joel M. Kaplan ◽  
Harvey J. Grill

Abstract Fourth intracerebroventricular (4th-icv) administration of the melanocortin-3/4 receptor (MC3/4-R) agonist, MTII, reduces food intake; the antagonist, SHU9119, increases feeding. The dorsal motor nucleus of the vagus nerve (DMX) contains the highest density of MC4-R messenger RNA in the brain. To explore the possibility that the DMX contributes to 4th-icv MC4-R effects, we delivered doses of MTII and SHU9119 that are subthreshold for ventricular response unilaterally through a cannula centered above the DMX. MTII markedly suppressed 2-h (50%), 4-h (50%), and 24-h (33%) intake. Feeding was significantly increased 4 h (50%) and 24 h (20%) after SHU9119 injections. These results suggest that receptors in the DMX, or the dorsal vagal complex more generally, underlie effects obtained with 4th-icv administration of these ligands. We investigated possible vagal mediation of 4th-icv MTII effects by giving the agonist to rats with subdiaphragmatic vagotomy. MTII suppressed 2-, 4-, and 24-h liquid diet intake (∼80%) to the same extent in vagotomized and surgical control rats. We conclude that stimulation or antagonism of MC3/4-Rs in the dorsal vagal complex yields effects on food intake that do not require an intact vagus nerve.


2012 ◽  
Vol 520 (1) ◽  
pp. 82-86 ◽  
Author(s):  
H. Jonaidi ◽  
L. Abbassi ◽  
M.M. Yaghoobi ◽  
H. Kaiya ◽  
D.M. Denbow ◽  
...  

Nutrients ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 1158
Author(s):  
Lizeth Cifuentes ◽  
Michael Camilleri ◽  
Andres Acosta

Sensory and motor functions of the stomach, including gastric emptying and accommodation, have significant effects on energy consumption and appetite. Obesity is characterized by energy imbalance; altered gastric functions, such as rapid gastric emptying and large fasting gastric volume in obesity, may result in increased food intake prior to reaching usual fullness and increased appetite. Thus, many different interventions for obesity, including different diets, anti-obesity medications, bariatric endoscopy, and surgery, alter gastric functions and gastrointestinal motility. In this review, we focus on the role of the gastric and intestinal functions in food intake, pathophysiology of obesity, and obesity management.


2020 ◽  
Vol 4 (Supplement_1) ◽  
Author(s):  
Colleen Hadley ◽  
Isin Cakir ◽  
Roger D Cone

Abstract Overweight and obesity are global concerns affecting nearly one third of the world population. These conditions are characterized by increased adiposity and are accompanied by a proportional increase in circulating leptin, an anorexigenic adipokine. Leptin is responsible for signaling peripheral energy status to the central nervous system to modulate food intake and energy expenditure. As such, neurons within the hypothalamus expressing the long isoform of leptin receptor (LepRb), a type I cytokine receptor, are primarily responsible for mediating the effects of leptin, which signal predominantly through the JAK2-STAT3 transduction mechanism. STAT3 is a latent transcription factor activated upon phosphorylation, which triggers its homodimerization and nuclear translocation. Evidence, however, for JAK2-independent, STAT3-dependent leptin receptor signaling mechanisms exist. FAK (focal adhesion kinase, Ptk2) and Pyk2 (protein tyrosine kinase 2b, Ptk2b) are a subset of nonreceptor protein tyrosine kinases and comprise the focal adhesion kinase family. FAK and Pyk2 are implicated in the regulation of cytokine receptor signaling. Furthermore, Pyk2 knockout mice have an obesity prone phenotype. Here, we studied the role of the focal adhesion kinases in leptin receptor signaling using genetic and pharmacological approaches. We found that overexpression of Pyk2 or FAK increased STAT3 phosphorylation (activation). Overexpression of a FAK or Pyk2 construct with impaired kinase activity, however, attenuated STAT3 phosphorylation, suggesting the increase in STAT3 phosphorylation is largely dependent upon kinase activity of FAK/Pyk2. Treatment of cells with a small molecule dual inhibitor of FAK and Pyk2 (PF431396) attenuated leptin-induced STAT3 phosphorylation in a mouse hypothalamic cell line. Importantly, this effect is independent of JAK2, as PF treatment of two independent JAK2-deficient cell lines exhibited similar attenuation of leptin-induced STAT3 phosphorylation. To assess the physiological relevance of FAK/Pyk2 in leptin receptor signaling in vivo, we administered PF compound to the lateral ventricle of 24-hour fasted lean wild-type mice followed by peripheral leptin administration. Intracerebroventricular (ICV) administration of PF suppressed the anorectic effect of leptin as evidenced by impaired inhibition of food intake upon refeeding. Accordingly, analysis of total hypothalamic lysates from these mice showed ICV PF impaired leptin-induced STAT3 phosphorylation. Taken together, these data suggest that Pyk2 and/or FAK play a role in leptin signal transduction.


2021 ◽  
pp. 097275312110057
Author(s):  
Archana Gaur ◽  
G.K. Pal ◽  
Pravati Pal

Background: Obesity is because of excessive fat accumulation that affects health adversely in the form of various diseases such as diabetes, hypertension, cardiovascular diseases, and many other disorders. Our Indian diet is rich in carbohydrates, and hence the sucrose-induced obesity is an apt model to mimic this. Ventromedial hypothalamus (VMH) is linked to the regulation of food intake in animals as well as humans. Purpose: To understand the role of VMHin sucrose-induced obesity on metabolic parameters. Methods: A total of 24 adult rats were made obese by feeding them on a 32% sucrose solution for 10 weeks. The VMH nucleus was ablated in the experimental group and sham lesions were made in the control group. Food intake, body weight, and biochemical parameters were compared before and after the lesion. Results: Male rats had a significant weight gain along with hyperphagia, whereas female rats did not have a significant weight gain inspite of hyperphagia. Insulin resistance and dyslipidemia were seen in both the experimental and control groups. Conclusion: A sucrose diet produces obesity which is similar to the metabolic syndrome with insulin resistance and dyslipidemia, and a VMH lesion further exaggerates it. Males are more prone to this exaggeration.


2009 ◽  
Vol 123 (5) ◽  
pp. 1058-1065 ◽  
Author(s):  
Alexander W. Johnson ◽  
Rebecca Canter ◽  
Michela Gallagher ◽  
Peter C. Holland

Sign in / Sign up

Export Citation Format

Share Document