scholarly journals Downregulation of claudin-2 expression in renal epithelial cells by metabolic acidosis

2009 ◽  
Vol 297 (3) ◽  
pp. F604-F611 ◽  
Author(s):  
Daniel F. Balkovetz ◽  
Phillip Chumley ◽  
Hassane Amlal

Chronic metabolic acidosis (CMA) is associated with an inhibition of fluid reabsorption in the renal proximal tubule. The effects of CMA on paracellular transport across the renal epithelial tight junction (TJ) is unknown. Claudin-2 is a transmembrane TJ-associated protein which confers TJ paracellular permeability to Na+. We examined the effects of CMA on the expression of TJ transport proteins using both in vivo and in vitro models of CMA. The results showed downregulation of claudin-2 mRNA and protein expression in the cortex of rats subjected to the NH4Cl loading model of CMA. Madin-Darby canine kidney (MDCK) and HK-2 cells are models of renal epithelial cells and express claudin-2 protein in their TJ. We examined the effects of acidic pH exposure on the expression of claudin-2 in MDCK and HK-2 renal epithelial cells. Exposure of MDCK cells to pH 6.96 medium caused a significant and reversible decrease in claudin-2 protein abundance. A dose-response analysis of acidic medium exposure of MDCK and HK-2 cells demonstrated a downregulation of claudin-2 protein. The downregulation effect of acidic pH is specific to claudin-2 expression as the expression of other TJ-associated proteins (i.e., claudin-1, -3, -4, and -7, occludin, and zonula occludens-1) remained unchanged compared with control pH (7.40). Collectively, these data demonstrate that CMA downregulates the expression of claudin-2 likely through a direct effect of acidic pH. Potential physiological significance of these changes is discussed.

1993 ◽  
Vol 21 (2) ◽  
pp. 191-195 ◽  
Author(s):  
Knut-Jan Andersen ◽  
Erik Ilsø Christensen ◽  
Hogne Vik

The tissue culture of multicellular spheroids from the renal epithelial cell line LLC-PK1 (proximal tubule) is described. This represents a biological system of intermediate complexity between renal tissue in vivo and simple monolayer cultures. The multicellular structures, which show many similarities to kidney tubules in vivo, including a vectorial water transport, should prove useful for studying the potential nephrotoxicity of drugs and chemicals in vitro. In addition, the propagation of renal epithelial cells as multicellular spheroids in serum-free culture may provide information on the release of specific biological parameters, which may be suppressed or masked in serum-supplemented media.


2019 ◽  
Vol 244 (7) ◽  
pp. 554-564 ◽  
Author(s):  
Ana Klisuric ◽  
Benjamin Thierry ◽  
Ludivine Delon ◽  
Clive A Prestidge ◽  
Rachel J Gibson

M cells are an epithelial cell population found in the follicle-associated epithelium overlying gut-associated lymphoid tissues. They are specialized in the transcytosis of luminal antigens. Their transcytotic capacity and location in an immunocompetent environment has prompted the study of these cells as possible targets for oral drug delivery systems. Currently, the models most commonly used to study M cells are restricted to in vivo experiments conducted in mice, and in vitro studies conducted in models comprised either of primary epithelial cells or established cell lines of murine or human origin. In vitro models of the follicle-associated epithelium can be constructed in several ways. Small intestinal Lgr5+ stem cells can be cultured into a 3D organoid structure where M cells are induced with RANKL administration. Additionally, in vitro models containing an “M cell-like” population can be obtained through co-culturing intestinal epithelial cells with cells of lymphocytic origin to induce the M cell phenotype. The evaluation of the efficiency of the variations of these models and their relevance to the in vivo human system is hampered by the lack of a universal M cell marker. This issue has also hindered the advancement of M cell-specific targeting approaches aimed at improving the bioavailability of orally administered compounds. This critical review discusses the different approaches utilized in the literature to identify M cells, their efficiency, reliability and relevance, in the context of commonly used models of the follicle-associated epithelium. The outcome of this review is a clearly defined and universally recognized criteria for the assessment of the relevance of models of the follicle-associated models currently used. Impact statement The study of M cells, a specialized epithelial cell type found in the follicle-associated epithelium, is hampered by the lack of a universal M cell marker. As such, many studies lack reliable and universally recognized methods to identify M cells in their proposed models. As a result of this it is difficult to ascertain whether the effects observed are due to the presence of M cells or an unaccounted variable. The outcome of this review is the thorough evaluation of the many M cell markers that have been used in the literature thus far and a proposed criterion for the identification of M cells for future publications. This will hopefully lead to an improvement in the quality of future publications in this field.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Marta Albertyńska ◽  
Hubert Okła ◽  
Krzysztof Jasik ◽  
Danuta Urbańska-Jasik ◽  
Przemysław Pol

AbstractBabesiosis is one of the most common infections in free-living animals and is rapidly becoming significant among human zoonoses. Cases of acute renal failure in humans caused by Babesia spp. have been described in the literature. The kidneys are characterised by intense blood flow through the blood vessels, which increases the likelihood of contact with the intra-erythrocyte parasite. The aim of this study was to observe the influence of B. microti (ATCC 30221) on renal epithelial cells in vitro cultured (NRK-52E line) and Wistar rats’ kidney. Both NRK-52E cells and rats’ kidney sections were analysed by light microscopy, transmission electron microscopy (TEM) and fluorescence in situ hybridization (FISH). Necrotic changes in renal epithelial cells have been observed in vitro and in vivo. In many cross-sections through the rats’ kidney, adhesion of blood cells to the vascular endothelium, accumulation of erythrocytes and emboli were demonstrated. In NRK-52E culture, elements with a distinctly doubled cell membrane resembling B. microti were found inside the cytoplasm and adjacent to the cell layer. The study indicates a chemotactic tendency for B. microti to adhere to the renal tubules' epithelium, a possibility of piroplasms entering the renal epithelial cells, their proliferation within the cytoplasm and emboli formation.


PLoS ONE ◽  
2014 ◽  
Vol 9 (2) ◽  
pp. e88071 ◽  
Author(s):  
Birgit Berkenkamp ◽  
Nathan Susnik ◽  
Arpita Baisantry ◽  
Inna Kuznetsova ◽  
Christoph Jacobi ◽  
...  

2004 ◽  
Vol 24 (2) ◽  
pp. 250-257 ◽  
Author(s):  
Michael C. Braun ◽  
Caitlin N. Kelly ◽  
Anne E. Prada ◽  
Jaya Mishra ◽  
Deepa Chand ◽  
...  

2019 ◽  
Author(s):  
Juri Habicht ◽  
Ashley Mooneyham ◽  
Mihir Shetty ◽  
Xiaonan Zhang ◽  
Vijayalakshmi Shridhar ◽  
...  

AbstractUNC-45A is a ubiquitously expressed protein highly conserved throughout evolution. Most of what we currently know about UNC-45A pertains to its role as a regulator of the actomyosin system. However, emerging studies from both our and other laboratories support a role of UNC-45A outside of actomyosin regulation. This includes studies showing that UNC-45A: regulates gene transcription, co-localizes and biochemically co-fractionates with gamma tubulin and regulates centrosomal positioning, is found in the same subcellular fractions where MT-associated proteins are, and is a mitotic spindle-associated protein with MT destabilizing activity in absence of the actomyosin system.Here, we extended our previous findings and show that UNC45A is variably expressed across a spectrum of cell lines with the highest level being found in HeLa cells and in ovarian cancer cells inherently paclitaxel-resistant. Furthermore, we show that UNC-45A is preferentially expressed in epithelial cells, localizes to mitotic spindles in clinical tumor specimens of cancer and co-localizes and co-fractionates with MTs in interphase cells independent of actin or myosin.In sum, we report alteration of UNC45A localization in the setting of chemotherapeutic treatment of cells with paclitaxel, and localization of UNC45A to MTs both in vitro and in vivo. These findings will be important to ongoing and future studies in the field that further identify the important role of UNC45A in cancer and other cellular processes.


2003 ◽  
Vol 443 (6) ◽  
pp. 774-781 ◽  
Author(s):  
Ben Vainer ◽  
Susanne S�rensen ◽  
Jakob Seidelin ◽  
Ole Haagen Nielsen ◽  
Thomas Horn

Sign in / Sign up

Export Citation Format

Share Document