scholarly journals Kidney Injury Molecule-1 Is Up-Regulated in Renal Epithelial Cells in Response to Oxalate In Vitro and in Renal Tissues in Response to Hyperoxaluria In Vivo

PLoS ONE ◽  
2012 ◽  
Vol 7 (9) ◽  
pp. e44174 ◽  
Author(s):  
Lakshmipathi Khandrika ◽  
Sweaty Koul ◽  
Randall B. Meacham ◽  
Hari K. Koul
1993 ◽  
Vol 21 (2) ◽  
pp. 191-195 ◽  
Author(s):  
Knut-Jan Andersen ◽  
Erik Ilsø Christensen ◽  
Hogne Vik

The tissue culture of multicellular spheroids from the renal epithelial cell line LLC-PK1 (proximal tubule) is described. This represents a biological system of intermediate complexity between renal tissue in vivo and simple monolayer cultures. The multicellular structures, which show many similarities to kidney tubules in vivo, including a vectorial water transport, should prove useful for studying the potential nephrotoxicity of drugs and chemicals in vitro. In addition, the propagation of renal epithelial cells as multicellular spheroids in serum-free culture may provide information on the release of specific biological parameters, which may be suppressed or masked in serum-supplemented media.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Marta Albertyńska ◽  
Hubert Okła ◽  
Krzysztof Jasik ◽  
Danuta Urbańska-Jasik ◽  
Przemysław Pol

AbstractBabesiosis is one of the most common infections in free-living animals and is rapidly becoming significant among human zoonoses. Cases of acute renal failure in humans caused by Babesia spp. have been described in the literature. The kidneys are characterised by intense blood flow through the blood vessels, which increases the likelihood of contact with the intra-erythrocyte parasite. The aim of this study was to observe the influence of B. microti (ATCC 30221) on renal epithelial cells in vitro cultured (NRK-52E line) and Wistar rats’ kidney. Both NRK-52E cells and rats’ kidney sections were analysed by light microscopy, transmission electron microscopy (TEM) and fluorescence in situ hybridization (FISH). Necrotic changes in renal epithelial cells have been observed in vitro and in vivo. In many cross-sections through the rats’ kidney, adhesion of blood cells to the vascular endothelium, accumulation of erythrocytes and emboli were demonstrated. In NRK-52E culture, elements with a distinctly doubled cell membrane resembling B. microti were found inside the cytoplasm and adjacent to the cell layer. The study indicates a chemotactic tendency for B. microti to adhere to the renal tubules' epithelium, a possibility of piroplasms entering the renal epithelial cells, their proliferation within the cytoplasm and emboli formation.


2019 ◽  
Vol 20 (20) ◽  
pp. 5238 ◽  
Author(s):  
Daniela Maria Tanase ◽  
Evelina Maria Gosav ◽  
Smaranda Radu ◽  
Claudia Florida Costea ◽  
Manuela Ciocoiu ◽  
...  

Acute kidney injury (AKI) following platinum-based chemotherapeutics is a frequently reported serious side-effect. However, there are no approved biomarkers that can properly identify proximal tubular injury while routine assessments such as serum creatinine lack sensitivity. Kidney-injury-molecule 1 (KIM-1) is showing promise in identifying cisplatin-induced renal injury both in vitro and in vivo studies. In this review, we focus on describing the mechanisms of renal tubular cells cisplatin-induced apoptosis, the associated inflammatory response and oxidative stress and the role of KIM-1 as a possible biomarker used to predict cisplatin associated AKI.


2019 ◽  
Vol 44 (4) ◽  
pp. 465-478 ◽  
Author(s):  
Zhiming Ye ◽  
Li Zhang ◽  
Ruizhao Li ◽  
Wei Dong ◽  
Shuangxin Liu ◽  
...  

Background/Aims: Acute kidney injury (AKI) is a serious complication of sepsis and has a high morbidity and mortality rate. Caspase-11 induces pyroptosis, a form of programmed cell death that plays a critical role in endotoxic shock, but its role in tubular epithelial cell death and whether it contributes to sepsis-associated AKI remains unknown. Methods: The caspase-11–/– mouse received an intraperitoneal injection of lipopolysaccharide (LPS, 40 mg/kg body weight). Caspase-11–/– renal tubular epithelial cells (RTECs) form C57BL caspase-11–/– mice were treated with LPS in vitro. The IL-1β ELISA kit and Scr assay kit were used to measure the level of interleukin-1β and serum creatinine. Annexin V-FITC assay and TUNEL staining assay were used to detect the cell death in different groups in vitro and in vivo. Western blot was performed to analyze the protein expression of caspase-11 and Gsdmdc1. Results: LPS-induced sepsis results in lytic death of RTECs, accompanied by increased expression of the pyroptosis-related proteins caspase-11 and Gsdmd. However, the increase in pyroptosis-related protein expression induced by LPS was attenuated with caspase-11 knockout, both in vitro and in vivo. Furthermore, when challenged with lethal doses of systemic LPS, pathologic abnormalities in renal structure, increased serum and kidney interleukin-1β, increased serum creatinine, and animal death were observed in wild-type mice but prevented in caspase-11–/– mice. Conclusions: Caspase-11-induced pyroptosis of RTECs is a key event during septic AKI, and targeting of caspase-11 in RTECs may serve as a novel therapeutic target in septic AKI.


Antioxidants ◽  
2020 ◽  
Vol 9 (9) ◽  
pp. 821
Author(s):  
Juan Carlos Jado ◽  
Blanca Humanes ◽  
María Ángeles González-Nicolás ◽  
Sonia Camaño ◽  
José Manuel Lara ◽  
...  

Gentamicin is a used antibiotic that causes nephrotoxicity in 10–20% of treatment periods, which limits its use considerably. Our results have shown that cilastatin may be a promising therapeutic alternative in toxin-induced acute kidney injury (AKI). Here, we investigated its potential use as a nephroprotector against gentamicin-induced AKI in vitro and in vivo. Porcine renal cells and rats were treated with gentamicin and/or cilastatin. In vivo nephrotoxicity was analyzed by measuring biochemical markers and renal morphology. Different apoptotic, oxidative and inflammatory parameters were studied at cellular and systemic levels. Megalin, mainly responsible for the entry of gentamicin into the cells, was also analyzed. Results show that cilastatin protects cells from gentamicin-induced AKI. Cilastatin decreased creatinine, BUN, kidney injury molecule-1 (KIM-1) and severe morphological changes previously increased by gentamicin in rats. The interference of cilastatin with lipid rafts cycling leads to decreased expression of megalin, and therefore gentamicin uptake and myeloid bodies, resulting in a decrease of apoptotic, oxidative and inflammatory events. Moreover, cilastatin did not prevent bacterial death by gentamicin. Cilastatin reduced gentamicin-induced AKI by preventing key steps in the amplification of the damage, which is associated to the disruption of megalin-gentamicin endocytosis. Therefore, cilastatin might represent a novel therapeutic tool in the prevention and treatment of gentamicin-induced AKI in the clinical setting.


PLoS ONE ◽  
2014 ◽  
Vol 9 (2) ◽  
pp. e88071 ◽  
Author(s):  
Birgit Berkenkamp ◽  
Nathan Susnik ◽  
Arpita Baisantry ◽  
Inna Kuznetsova ◽  
Christoph Jacobi ◽  
...  

2019 ◽  
Vol 34 (10) ◽  
pp. 1669-1680 ◽  
Author(s):  
Takamasa Iwakura ◽  
Zhibo Zhao ◽  
Julian A Marschner ◽  
Satish Kumar Devarapu ◽  
Hideo Yasuda ◽  
...  

AbstractBackgroundCisplatin is an effective chemotherapeutic agent. However, acute kidney injury (AKI) and subsequent kidney function decline limits its use. Dipeptidyl peptidase-4 (DPP-4) inhibitor has been reported to attenuate kidney injury in some in vivo models, but the mechanisms-of-action in tubule recovery upon AKI remain speculative. We hypothesized that DPP-4 inhibitor teneligliptin (TG) can facilitate kidney recovery after cisplatin-induced AKI.MethodsIn in vivo experiment, AKI was induced in rats by injecting 5 mg/kg of cisplatin intravenously. Oral administration of 10 mg/kg of TG, once a day, was started just before injecting cisplatin or from Day 5 after cisplatin injection. In an in vitro experiment, proliferation of isolated murine tubular cells was evaluated with 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assay, cell cycle analysis and cell counting. Cell viability was analysed by MTT assay or lactate dehydrogenase (LDH) assay.ResultsIn in vivo experiments, we found that TG attenuates cisplatin-induced AKI and accelerates kidney recovery after the injury by promoting the proliferation of surviving epithelial cells of the proximal tubule. TG also suppressed intrarenal tumour necrosis factor-α expression, and induced macrophage polarization towards the anti-inflammatory M2 phenotype, both indirectly endorsing tubule recovery upon cisplatin injury. In in vitro experiments, TG directly accelerated the proliferation of primary tubular epithelial cells. Systematic screening of the DPP-4 substrate chemokines in vitro identified CXC chemokine ligand (CXCL)-12 as a promoted mitogenic factor. CXCL12 not only accelerated proliferation but also inhibited cell death of primary tubular epithelial cells after cisplatin exposure. CXC chemokine receptor (CXCR)-4 antagonism abolished the proliferative effect of TG.ConclusionsThe DPP-4 inhibitor TG can accelerate tubule regeneration and functional recovery from toxic AKI via an anti-inflammatory effect and probably via inhibition of CXCL12 breakdown. Hence, DPP-4 inhibitors may limit cisplatin-induced nephrotoxicity and improve kidney function in cancer patients.


Sign in / Sign up

Export Citation Format

Share Document