scholarly journals Angiotensin II acts through the angiotensin 1a receptor to upregulate pendrin

2011 ◽  
Vol 301 (6) ◽  
pp. F1314-F1325 ◽  
Author(s):  
Jill W. Verlander ◽  
Seongun Hong ◽  
Vladimir Pech ◽  
James L. Bailey ◽  
Diana Agazatian ◽  
...  

Pendrin is an anion exchanger expressed in the apical regions of B and non-A, non-B intercalated cells. Since angiotensin II increases pendrin-mediated Cl− absorption in vitro, we asked whether angiotensin II increases pendrin expression in vivo and whether angiotensin-induced hypertension is pendrin dependent. While blood pressure was similar in pendrin null and wild-type mice under basal conditions, following 2 wk of angiotensin II administration blood pressure was 31 mmHg lower in pendrin null than in wild-type mice. Thus pendrin null mice have a blunted pressor response to angiotensin II. Further experiments explored the effect of angiotensin on pendrin expression. Angiotensin II administration shifted pendrin label from the subapical space to the apical plasma membrane, independent of aldosterone. To explore the role of the angiotensin receptors in this response, pendrin abundance and subcellular distribution were examined in wild-type, angiotensin type 1a (Agtr1a) and type 2 receptor (Agtr2) null mice given 7 days of a NaCl-restricted diet (< 0.02% NaCl). Some mice received an Agtr1 inhibitor (candesartan) or vehicle. Both Agtr1a gene ablation and Agtr1 inhibitors shifted pendrin label from the apical plasma membrane to the subapical space, independent of the Agtr2 or nitric oxide (NO). However, Agtr1 ablation reduced pendrin protein abundance through the Agtr2 and NO. Thus angiotensin II-induced hypertension is pendrin dependent. Angiotensin II acts through the Agtr1a to shift pendrin from the subapical space to the apical plasma membrane. This Agtr1 action may be blunted by the Agtr2, which acts through NO to reduce pendrin protein abundance.

Hypertension ◽  
2020 ◽  
Vol 76 (Suppl_1) ◽  
Author(s):  
Jia L Zhuo ◽  
Liang Zhang ◽  
Ana Leite ◽  
Xiao C Li

The present study used global ( Nhe3 -/- ), kidney-selective (tg Nhe3 -/- ), and proximal tubule-specific Na + /H + exchanger 3 (NHE3)-deficient mice (PT- Nhe3 -/- ) to test the hypothesis that NHE3 is required for the full development of angiotensin II (Ang II)-induced hypertension in mice. Four groups of adult male, age-matched wild-type (WT), global Nhe3 -/- , kidney-selective tg Nhe3 -/- and proximal tubule-specific Nhe3 -/- mice were infused with: a) saline; b) Ang II (10 pmol/min, i.v.); Ang II via an osmotic minipump for 2 weeks (1.5 mg/kg/day, i.p.); or treated with Ang II and losartan concurrently for 2 weeks (20 mg/kg/day, p.o.). Under basal conditions, global Nhe3 -/- , kidney-selective tg Nhe3 -/- and proximal tubule-specific Nhe3 -/- mice all showed significantly lower systolic, diastolic, and mean arterial pressure than wild-type mice (~15 ± 3 mmHg, P <0.01). The hypotensive phenotype in both global Nhe3 -/- and kidney-selective tg Nhe3 -/- mice was associated with abnormal intestinal structures, diarrhea, increased 24 h fecal Na + excretion, and salt wasting ( P <0.01). By contrast, there were no differences in intestinal structures and fecal Na + excretion between wild-type and PT- Nhe3 -/- mice. PT- Nhe3 -/- mice showed significant diuretic and natriuretic responses compared with wild-type mice ( P <0.01). Acute infusion of Ang II markedly increased arterial blood pressure in a time-dependent manner in wild-type mice, as expected ( P <0.01), but the pressure response was attenuated in global Nhe3 -/- , kidney-selective tg Nhe3 -/- , and PT- Nhe3 -/- mice ( P <0.01). Furthermore, the chronic pressor response to 2-week Ang II infusion was also significantly attenuated in Nhe3 -/- , tgNhe3 -/- , and PT- Nhe3 -/- mice, compared with wild-type mice ( P <0.01). Finally, concurrent treatment with losartan completely blocked the acute and chronic pressor responses to Ang II in wild-type, Nhe3 -/- , tg Nhe3 -/- , and PT- Nhe3 -/- mice (p<0.01). Taken together, these data support the proof of concept that NHE3 in the small intestines and the proximal tubules of the kidney is required for maintaining basal blood pressure homeostasis and for the development of Ang II-induced hypertension. Supported by NIH grants, 2R01DK102429-03A1, 1R56HL130988-01, and 2R01DK067299-10A1.


Hypertension ◽  
2020 ◽  
Vol 76 (Suppl_1) ◽  
Author(s):  
Ana Paula O Leite ◽  
Xiao C Li ◽  
Dulce E Casarini ◽  
Jia L Zhuo

Dysregulation of intrarenal renin-angiotensin system is one of the key factors of human hypertension, but the mechanisms involved remain incompletely understood. To determine the roles of AT 1a receptors in the proximal tubules of the kidney, we infused angiotensin II (Ang II) for 2 weeks (40 ng / min, i.p.) in adult male and female wild-type C57BL/6J and mutant mice with deletion of AT 1a receptors in the proximal tubules (PT- Agtr1a -/- ), and treated with or without the AT 1 receptor blocker losartan (20 mg/kg/day, p.o.) (n=8 per group). The pressor response, 24 h urinary Na + excretion, glomerular and tubulointerstitial injury were compared between male and female wild-type and PT- Agtr1a -/- mice. Basal systolic, diastolic, and mean arterial blood pressure were about 13 ± 3 mmHg lower in male and female PT- Agtr1a -/- mice ( P <0.01), but no differences were observed between male and female wild-type or PT- Agtr1a -/- mice. In response to Ang II, both male and female wild-type and PT- Agtr1a -/- mice developed hypertension ( P <0.01), and the net pressor response were similar in male and female wild-type and PT- Agtr1a -/- mice (n.s.). However, absolute blood pressure was about 12 ± 3 mmHg lower in male and female PT- Agtr1a -/- mice ( P <0.01 vs. wild-type). Ang II-induced hypertension increased the natriuretic response in both male and female wild-type and PT- Agtr1a -/- mice ( P <0.01), but there were no significant differences between male and female wild-type and PT- Agtr1a -/- mice (n.s). Losartan did not increase the natriuretic responses further in all animals. Furthermore, Ang II-induced hypertension was associated with significant increases in glomerular and tubulointerstitial injury in male and female wild-type mice ( P <0.01), which were attenuated in male and female PT- Agtr1a -/- mice ( P <0.01). LOS treatment attenuated Ang II-induced hypertension and decreased Ang II-induced glomerular and tubulointerstitial injury in male and female wild-type and PT- Agtr1a -/- mice ( P <0.01). Taken together, we demonstrated that intratubular AT 1 (AT 1a ) receptors in the proximal tubules of the kidney plays a key role in maintaining basal blood pressure homeostasis and overall body salt and fluid balance, and the development of Ang II-induced hypertension and kidney injury.


Hypertension ◽  
2021 ◽  
Vol 78 (Suppl_1) ◽  
Author(s):  
Daniel J Fehrenbach ◽  
Meena S Madhur

Hypertension, or an elevated blood pressure, is the primary modifiable risk factor for cardiovascular disease, the number one cause of mortality worldwide. We previously demonstrated that Th17 activation and interleukin 17A (IL-17A)/IL-21 production is integral for the full development of a hypertensive phenotype as well as the renal and vascular damage associated with hypertension. Rho-associated coiled-coil containing protein Kinase 2 (ROCK2) serves as a molecular switch upregulating Th17 and inhibiting regulatory T cell (Treg) differentiation. We hypothesize that hypertension is characterized by excessive T cell ROCK2 activation leading to increased Th17/Treg ratios and ultimately end-organ damage. We first showed in vitro that KD025, an experimental orally bioavailable ROCK2 inhibitor inhibits Th17 cell proliferation and IL-17A/IL-21 production. To determine if hypertensive stimuli such as endothelial stretch increases T cell ROCK2 expression, we cultured human aortic endothelial cells exposed to 5% (normotensive) or 10% (hypertensive) stretch with circulating human T cells and HLA-DR+ antigen presenting cells. Hypertensive stretch increased T cell ROCK2 expression 2-fold. We then tested the effect of ROCK2 inhibition with KD025 (50mg/kg i.p. daily) in vivo on angiotensin II (Ang II)-induced hypertension. Treatment with KD025 significantly attenuated the hypertensive response within 1 week of Ang II treatment (systolic blood pressure: 139± 8 vs 108±7mmHg) and this persisted for the duration of the 4 week study reaching blood pressures 20 mmHg lower (135±13mmHg) than vehicle treated mice (158±4mmHg p<0.05 effect of treatment 2-way Repeated Measures ANOVA). Flow cytometric analysis of tissue infiltrating leukocytes revealed that KD025 treatment increased Treg/Th17 ratios in the kidney (0.61±0.03 vs 0.79±0.08, p<0.05 student’s t-test). Thus, T cell ROCK2 may be a novel therapeutic target for the treatment of hypertension.


Author(s):  
Xiao Chun Li ◽  
Ana Paula Oliveira Leite ◽  
Xiaowen Zheng ◽  
Chunling Zhao ◽  
Xu Chen ◽  
...  

The present study used a novel mouse model with proximal tubule-specific knockout of AT 1a receptors in the kidney, PT- Agtr1a −/− , to test the hypothesis that intratubular Ang II (angiotensin II) and AT 1a receptors in the proximal tubules are required for maintaining normal blood pressure and the development of Ang II–induced hypertension. Twenty-six groups (n=6–15 per group) of adult male wild-type, global Agtr1a −/− , and PT- Agtr1a −/− mice were infused with Ang II (1.5 mg/kg per day, IP), or overexpressed an intracellular Ang II fusion protein in the proximal tubules for 2 weeks. Basal telemetry blood pressure were ≈15±3 mm Hg lower in PT- Agtr1a −/− than wild-type mice and ≈13±3 mm Hg higher than Agtr1a −/− mice ( P <0.01). Basal glomerular filtration was ≈23.9% higher ( P <0.01), whereas fractional proximal tubule Na + reabsorption was lower in PT- Agtr1a −/− mice ( P <0.01). Deletion of AT 1a receptors in the proximal tubules augmented the pressure-natriuresis response ( P <0.01) and natriuretic responses to salt loading or Ang III infusion ( P <0.01). Ang II induced hypertension in wild-type, PT- Agtr1a −/− and PT- Nhe3 −/− mice, but the pressor response was ≈16±2 mm Hg lower in PT- Agtr1a −/− and PT- Nhe3 −/− mice ( P <0.01). Deletion of AT 1a receptors or NHE3 (Na + /H + exchanger 3) in the proximal tubules attenuated ≈50% of Ang II–induced hypertension in wild-type mice ( P <0.01), but blocked intracellular Ang II fusion protein-induced hypertension in PT- Agtr1a −/− mice ( P <0.01). Taken together, the results of the present study provide new insights into the critical role of intratubular Ang II/AT 1 (AT 1a )/NHE3 pathways in the proximal tubules in normal blood pressure control and the development of Ang II–induced hypertension.


Hypertension ◽  
2020 ◽  
Vol 76 (Suppl_1) ◽  
Author(s):  
Xiao C Li ◽  
Ana P Leite ◽  
Liang Zhang ◽  
Jia L Zhuo

The present study tested the hypothesis that intratubular angiotensin II (Ang II) and AT 1a receptors in the proximal tubules of the kidney plays an important role in basal blood pressure control and in the development of Ang II-induced hypertension. Mutant mice with proximal tubule-specific deletion of AT 1a receptors in the kidney, PT- Agtr1a -/- , were generated to test the hypothesis. Eight groups (n=7-12 per group) of adult male wild-type (WT) and PT- Agtr1a -/- mice were infused with or without Ang II for 2 weeks (1.5 mg/kg, i.p.). Basal systolic, diastolic, and mean arterial pressures were ~13 ± 3 mmHg lower in PT- Agtr1a -/- than WT mice ( P <0.01). Basal glomerular filtration rate (GFR), as measured using transdermal FITC-sinistrin, was significantly higher in PT- Agtr1a -/- mice (WT: 160.4 ± 7.0 μl/min vs. PT- Agtr1a -/- : 186.0 ± 6.0 μl/min, P <0.05). Basal 24 h urinary Na + excretion (U Na V) was significantly higher in PT- Agtr1a -/- than WT mice ( P <0.01). In response to Ang II infusion, both WT and PT- Agtr1a -/- mice developed hypertension, and the magnitude of the pressor response to Ang II was similar in WT (Δ43 ± 3 mmHg, P <0.01) and PT- Agtr1a -/- mice (Δ39 ± 5 mmHg, P <0.01). However, the absolute blood pressure level was still 16 ± 3 mmHg lower in PT- Agtr1a -/- mice ( P <0.01). Ang II significantly decreased GFR to 132.2 ± 7.0 μl/min in WT mice ( P <0.01), and to 129.4 ± 18.6 μl/min in PT- Agtr1a -/- mice ( P <0.01), respectively. In WT mice, U Na V increased from 139.3 ± 22.3 μmol/24 h in the control group to 196.4 ± 29.6 μmol/24 h in the Ang II-infused group ( P <0.01). In PT- Agtr1a -/- mice, U Na V increased from 172.0 ± 10.2 μmol/24 h in the control group to 264.7 ± 35.4 μmol/24 h in the Ang II-infused group ( P <0.01). The pressor response to Ang II was attenuated, while the natriuretic response was augmented by losartan in WT and PT- Agtr1a -/- mice ( P <0.01). Finally, proximal tubule-specific deletion of AT 1a receptors significantly augmented the pressure-natriuresis response and natriuretic responses to acute saline infusion ( P <0.01) or a 2% high salt diet ( P <0.01). We concluded that deletion of AT 1a receptors selectively in the proximal tubules lowers basal blood pressure and attenuates Ang II-induced hypertension by increasing GFR and promoting the natriuretic response in PT- Agtr1a -/- mice.


1978 ◽  
Vol 234 (6) ◽  
pp. E593 ◽  
Author(s):  
T A Kotchen ◽  
W J Welch ◽  
R T Talwalkar

Circulating neutral lipids inhibit the in vitro renin reaction. To identify the inhibitor(s), free fatty acids were added to human renin and homologous substrate. Capric, lauric, palmitoleic, linoleic, and arachidonic acids each inhibited the rate of angiotensin I production in vitro (P less than 0.01). Inhibition by polysaturated fatty acids (linoleic and arachidonic) was less (P less than 0.01) after catalytic hydrogenation of the double bonds. To evaluate an in vivo effect of renin inhibition intra-arterial blood pressure responses to infusions of renin and angiotensin II (5.0 microgram) were measured in anephric rats (n = 6) before and after infusion of linoleic acid (10 mg iv). Mean increase of blood pressure to angiotensin II before (75 mmHg +/- 9) and after (90 +/- 12) linoleic acid did not differ (P greater than 0.05). However, the pressor response to renin after linoleic acid (18 +/- 3) was less (P less than 0.00)) than that before (102 +/- 13). In summary, several fatty acids inhibit the in vitro renin reaction, and in part inhibition is dependent on unsaturation. Linoleic acid also inhibits the in vivo pressor response to renin. These results suggest that fatty acids may modify the measurement of plasma renin activity and may also affect angiotensin production in vivo.


2005 ◽  
Vol 288 (2) ◽  
pp. H477-H485 ◽  
Author(s):  
Iva Dostanic ◽  
Richard J. Paul ◽  
John N. Lorenz ◽  
Steven Theriault ◽  
James W. Van Huysse ◽  
...  

Although ouabain is known to induce hypertension, the mechanism of how this cardiac glycoside affects blood pressure is uncertain. The present study demonstrates that the α2-isoform of the Na-K-ATPase mediates the pressor effects of ouabain in mice. To accomplish this, we analyzed the effect of ouabain on blood pressure in wild-type mice, where the α2-isoform is sensitive to ouabain, and genetically engineered mice expressing a ouabain-insensitive α2-isoform of the Na-K-ATPase. Thus differences in the response to ouabain between these two genotypes can only be attributed to the α2-isoform of Na-K-ATPase. As the α1-isoform is naturally resistant to ouabain in rodents, it will not be inhibited by ouabain in either genotype. Whereas prolonged administration of ouabain increased levels of ouabain in serum from both wild-type and targeted animals, hypertension developed only in wild-type mice. In addition, bolus intravenous infusion of ouabain increased the systolic, mean arterial, and left ventricular blood pressure in only wild-type anesthetized mice. In vitro, ouabain increased vascular tone and thereby phenylephrine-induced contraction of the aorta in intact and endothelium-denuded wild-type mice but in α2-resistant mice. Ouabain also increased the magnitude of the spontaneous contractions of portal vein and the basal tone of the intact aorta from only wild-type mice. The increase in aortic basal tone was dependent on the presence of endothelium. Our studies also demonstrate that the α2-isoform of Na-K-ATPase mediates the ouabain-induced increase in vascular contractility. This could play a role in the development and maintenance of ouabain-induced hypertension.


1996 ◽  
Vol 271 (1) ◽  
pp. E113-E122 ◽  
Author(s):  
N. D. Vaziri ◽  
X. J. Zhou ◽  
F. Naqvi ◽  
J. Smith ◽  
F. Oveisi ◽  
...  

We studied the mechanism of erythropoietin (EPO)-induced hypertension (HTN) in rats with chronic renal failure (CRF). After partial nephrectomy, rats were randomized into four groups. Group A received EPO, 150 U/kg, two times weekly for 6 wk to prevent anemia; group B received placebo injections and became anemic; group C received EPO but was kept anemic by dietary iron deficiency; and group D received placebo and regular transfusions to match hematocrit (Hct) in group A. Blood pressure (BP), Hct, platelet cytosolic calcium ([Ca2+]i) and magnesium concentration, and pressor and vasodilatory responses were determined. By design, Hct in groups A and D were comparable and significantly greater (P < 0.01) than in groups B and C. Despite divergent Hct values, the EPO-treated groups A and C showed a significant rise in BP compared with the placebo-treated groups B and D. HTN occurred whether EPO therapy was begun immediately or 4 wk after nephrectomy. EPO therapy augmented the elevation of basal [Ca2+]i and restored the defective thrombin-mediated rise of platelet [Ca2+]i in CRF animals. EPO therapy did not alter caudal artery contraction in response to either 68 mM K(+)-induced depolarization, angiotensin II or alpha 1-agonist, methoxamine in vitro, or the pressor response to angiotensin II in vivo. However, EPO therapy impaired the hypotensive response to nitric oxide (NO) donors, sodium nitroprusside and S-nitroso-N-acetyl-D,L-penicillamine, and reversed the CRF-induced upregulation of guanosine 3',5'-cyclic monophosphate production by thoracic aorta in vitro. Thus EPO-induced HTN in CRF rats is Hct independent and is associated with and perhaps causally related to increased basal and stimulated [Ca2+]i and impaired vasodilatory response to NO.


Hypertension ◽  
2012 ◽  
Vol 60 (suppl_1) ◽  
Author(s):  
Tarianna Stewart-Hutto ◽  
Sharon Francis

Angiotensin II (Ang II) is a potent vasoconstrictor that activates vascular smooth muscle and in excess amounts is an important contributing factor in the development of hypertension. However, the downstream signaling pathways mediating the effects of Ang II in the vasculature is not fully known. The present study examines the regulation of serum- and glucocorticoid inducible kinase (SGK1) a serine/threonine kinase that has been implicated in hyperglycemia- and salt-induced hypertension. We hypothesized that SGK1 is up-regulated in pathologically remodeled blood vessels in the context of Ang II-induced hypertension and by Ang II in vascular smooth muscle cells in vitro . Therefore, we examined SGK1 protein expression in human aortic smooth muscle cells (HASM) stimulated with increasing doses of Ang II (0-100nM) in vitro. Our results demonstrated a dose-dependent increase in SGK1 protein expression. SGK1 expression was increased approximately 10-fold following 60 minutes of stimulation with 100nM Ang II. Next, we examined SGK1 expression in the vasculature in vivo in a mouse model of Ang II-induced hypertension. Based on immunohistochemistry, our data indicated that SGK1 was up-regulated in the medial layer of the aorta in mice infused with 0.7mg/kg/day Ang II, a dose that significantly increases blood pressure. Overall, these results indicate that Ang II up-regulates SGK1 in both smooth muscle cells and blood vessels. Our results also suggest that SGK1 may be responsible for the increase in blood pressure and remodeling of the blood vessels.


1972 ◽  
Vol 43 (6) ◽  
pp. 839-849 ◽  
Author(s):  
E. C. Osborn ◽  
G. Tildesley ◽  
P. T. Pickens

1. The pressor responses to angiotensin I were compared with those to angiotensin II after injections into the left ventricle and jugular vein in the sheep, dog and pig. 2. The ability of angiotensin I to raise the blood pressure was less than that of angiotensin II with both routes of injection, a difference which was more marked after ventricular injection. 3. When equipressor doses of the hormones were given there was a delay of 1–3 s in the onset of the pressor response to angiotensin I compared with angiotensin II after left-ventricular injections; the difference in the delay in onset was less apparent with intravenous injections. 4. The development of the pressor responses was similar with both hormones when equipressor doses were used but the rises in blood pressure were more prolonged with angiotensin I, especially when given by the left-ventricular route. 5. The in vitro rate of activation of angiotensin I by blood was much slower than the apparent in vivo formation of angiotensin II.


Sign in / Sign up

Export Citation Format

Share Document