scholarly journals Coexpression of MAST205 inhibits the activity of Na+/H+ exchanger NHE3

2006 ◽  
Vol 290 (2) ◽  
pp. F428-F437 ◽  
Author(s):  
Dongsheng Wang ◽  
Hye Jeong Lee ◽  
Deborah S. Cooper ◽  
Ludmila Cebotaro ◽  
Paul D. Walden ◽  
...  

Recent studies have shown that accessory proteins that interact with the apical Na+/H+ exchanger NHE3 are a vital part of the dynamic nature of the Na+/H+ exchanger regulation. We have identified MAST205, a microtubule-associated serine/threonine kinase with a molecular mass of 205 kDa that interacts with NHE3. MAST205 contains a S/T kinase domain and a PDZ domain that mediates interaction with NHE3. Northern blot analysis showed that MAST205 is highly expressed in human and rat kidney. Expression in opossum kidney (OK) cells showed that MAST205 is predominantly expressed in the apical membrane of the cells. Immunohistochemical studies demonstrated the presence of MAST205 at the apical region of the renal proximal tubules. Heterologous expression of MAST205 in OK cells inhibited endogenous NHE3 activity, and this inhibition required the presence of the kinase domain of MAST205, since deletion of the kinase domain or a dominant-negative mutant of MAST205 did not affect the activity of NHE3. Consistent with these results, we found that MAST205 phosphorylated NHE3 under in vitro conditions. However, overexpression of MAST205 did not affect expression of NHE3 proteins, suggesting that the effect of MAST205 was not mediated by a decrease in NHE3 expression. These findings suggest that MAST205 regulates NHE3 activity and, although the precise mechanism is yet to be determined, MAST205 appears to inhibit NHE3 activity through a phosphorylation-dependent mechanism.

1999 ◽  
Vol 19 (10) ◽  
pp. 6500-6508 ◽  
Author(s):  
Nanette J. Pazdernik ◽  
David B. Donner ◽  
Mark G. Goebl ◽  
Maureen A. Harrington

ABSTRACT The death domain-containing receptor superfamily and their respective downstream mediators control whether or not cells initiate apoptosis or activate NF-κB, events critical for proper immune system function. A screen for upstream activators of NF-κB identified a novel serine-threonine kinase capable of activating NF-κB and inducing apoptosis. Based upon domain organization and sequence similarity, this novel kinase, named mRIP3 (mouse receptor interacting protein 3), appears to be a new RIP family member. RIP, RIP2, and mRIP3 contain an N-terminal kinase domain that share 30 to 40% homology. In contrast to the C-terminal death domain found in RIP or the C-terminal caspase-recruiting domain found in RIP2, the C-terminal tail of mRIP3 contains neither motif and is unique. Despite this feature, overexpression of the mRIP3 C terminus is sufficient to induce apoptosis, suggesting that mRIP3 uses a novel mechanism to induce death. mRIP3 also induced NF-κB activity which was inhibited by overexpression of either dominant-negative NIK or dominant-negative TRAF2. In vitro kinase assays demonstrate that mRIP3 is catalytically active and has autophosphorylation site(s) in the C-terminal domain, but the mRIP3 catalytic activity is not required for mRIP3 induced apoptosis and NF-κB activation. Unlike RIP and RIP2, mRIP3 mRNA is expressed in a subset of adult tissues and is thus likely to be a tissue-specific regulator of apoptosis and NF-κB activity. While the lack of a dominant-negative mutant precludes linking mRIP3 to a known upstream regulator, characterizing the expression pattern and the in vitro functions of mRIP3 provides insight into the mechanism(s) by which cells modulate the balance between survival and death in a cell-type-specific manner.


2009 ◽  
Vol 297 (3) ◽  
pp. C516-C525 ◽  
Author(s):  
Ricardo Villa-Bellosta ◽  
Víctor Sorribas

The main nonhormonal mechanism for controlling inorganic phosphate (Pi) homeostasis is renal adaptation of the proximal tubular Pi transport rate to changes in dietary phosphate content. Opossum kidney (OK) cell line is an in vitro renal model that maintains the ability of renal adaptation to the extracellular Pi concentration. We have studied how two competitive inhibitors of Pi transport, arsenate [As(V)] and phosphonoformate (PFA), affect adaptation to low and high Pi concentrations. OK cells show very high affinity for As(V) (inhibitory constant, Ki 0.12 mM) when compared with the rat kidney. As(V) very efficiently reversed the adaptation of OK cells to low Pi (0.1 mM), whereas PFA induced adaptation similar to 0.1 mM Pi. Adaptation with 2 mM Pi or As(V) was characterized by decreases in the maximal velociy ( Vmax) of Pi transport and an abundance of the NaPi-IIa Pi transporter in the plasma membrane, shown by the protein biotinylation. Conversely, PFA and 0.1 mM Pi increased the Vmax and transporter abundance. Changes in the Vmax were limited to a 50% variation, which was not paralleled by changes in the concentration of Pi or of the inhibitor. OK cells are very sensitive to As(V), but the effects are reversible and noncytotoxic. These effects can be interpreted as As(V) being transported into the cell, thereby mimicking a high Pi concentration. PFA blocks the uptake of Pi but is not transported, and it therefore simulates a low Pi concentration inside the cell. To conclude, a mathematical definition of the adaptation process is reported, thereby explaining the limited changes in Pi transport Vmax.


2000 ◽  
Vol 20 (5) ◽  
pp. 1571-1582 ◽  
Author(s):  
Shrikesh Sachdev ◽  
Sriparna Bagchi ◽  
Donna D. Zhang ◽  
Angela C. Mings ◽  
Mark Hannink

ABSTRACT The inhibitor of kappa B alpha (IκBα) protein is able to shuttle between the cytoplasm and the nucleus. We have utilized a combination of in vivo and in vitro approaches to provide mechanistic insight into nucleocytoplasmic shuttling by IκBα. IκBα contains multiple functional domains that contribute to shuttling of IκBα between the cytoplasm and the nucleus. Nuclear import of IκBα is mediated by the central ankyrin repeat domain. Similar to previously described nuclear import pathways, nuclear import of IκBα is temperature and ATP dependent and is blocked by a dominant-negative mutant of importin β. However, in contrast to classical nuclear import pathways, nuclear import of IκBα is independent of soluble cytosolic factors and is not blocked by the dominant-negative RanQ69L protein. Nuclear export of IκBα is mediated by an N-terminal nuclear export sequence. Nuclear export of IκBα requires the CRM1 nuclear export receptor and is blocked by the dominant-negative RanQ69L protein. Our results are consistent with a model in which nuclear import of IκBα is mediated through direct interactions with components of the nuclear pore complex, while nuclear export of IκBα is mediated via a CRM1-dependent pathway.


Development ◽  
1996 ◽  
Vol 122 (10) ◽  
pp. 3173-3183 ◽  
Author(s):  
K.L. Kroll ◽  
E. Amaya

We have developed a simple approach for large-scale transgenesis in Xenopus laevis embryos and have used this method to identify in vivo requirements for FGF signaling during gastrulation. Plasmids are introduced into decondensed sperm nuclei in vitro using restriction enzyme-mediated integration (REMI). Transplantation of these nuclei into unfertilized eggs yields hundreds of normal, diploid embryos per day which develop to advanced stages and express integrated plasmids nonmosaically. Transgenic expression of a dominant negative mutant of the FGF receptor (XFD) after the mid-blastula stage uncouples mesoderm induction, which is normal, from maintenance of mesodermal markers, which is lost during gastrulation. By contrast, embryos expressing XFD contain well-patterned nervous systems despite a putative role for FGF in neural induction.


2020 ◽  
Vol 48 (11) ◽  
pp. 6068-6080 ◽  
Author(s):  
Nicolás Nieto Moreno ◽  
Florencia Villafañez ◽  
Luciana E Giono ◽  
Carmen Cuenca ◽  
Gastón Soria ◽  
...  

Abstract We have previously found that UV-induced DNA damage causes hyperphosphorylation of the carboxy terminal domain (CTD) of RNA polymerase II (RNAPII), inhibition of transcriptional elongation and changes in alternative splicing (AS) due to kinetic coupling between transcription and splicing. In an unbiased search for protein kinases involved in the AS response to DNA damage, we have identified glycogen synthase kinase 3 (GSK-3) as an unforeseen participant. Unlike Cdk9 inhibition, GSK-3 inhibition only prevents CTD hyperphosphorylation triggered by UV but not basal phosphorylation. This effect is not due to differential degradation of the phospho-CTD isoforms and can be reproduced, at the AS level, by overexpression of a kinase-dead GSK-3 dominant negative mutant. GSK-3 inhibition abrogates both the reduction in RNAPII elongation and changes in AS elicited by UV. We show that GSK-3 phosphorylates the CTD in vitro, but preferentially when the substrate is previously phosphorylated, consistently with the requirement of a priming phosphorylation reported for GSK-3 efficacy. In line with a role for GSK-3 in the response to DNA damage, GSK-3 inhibition prevents UV-induced apoptosis. In summary, we uncover a novel role for a widely studied kinase in key steps of eukaryotic transcription and pre-mRNA processing.


1999 ◽  
Vol 276 (2) ◽  
pp. G499-G506 ◽  
Author(s):  
Barbara Nicke ◽  
Min-Jen Tseng ◽  
Marycarol Fenrich ◽  
Craig D. Logsdon

CCK stimulates pleiotrophic responses in pancreatic acinar cells; however, the intracellular signaling pathways involved are not well understood. To evaluate the role of the ras gene product in CCK actions, a strategy involving in vitro adenoviral-mediated gene delivery of a dominant-negative mutant Ras (RasN17) was utilized. Isolated acini were infected with various titers of either a control adenovirus or an adenoviral construct expressing RasN17 for 24 h before being treated with CCK. Titer-dependent expression of RasN17 in the acini was confirmed by Western blotting. Infection with control adenovirus [106–109plaque-forming units/mg acinar protein (multiplicity of infection of ∼1–1,000)] had no effect on CCK stimulation of acinar cell amylase release, extracellular-regulated kinase (ERK) or c-Jun kinase (JNK) kinases, or DNA synthesis. In contrast, infection with adenovirus bearing ras N17 increased basal amylase release, inhibited CCK-mediated JNK activation, had no effect on CCK activation of ERK, and inhibited DNA synthesis. These data demonstrate important roles for Ras in specific actions of CCK on pancreatic acinar function.


1993 ◽  
Vol 264 (4) ◽  
pp. F618-F622 ◽  
Author(s):  
R. P. Glahn ◽  
M. J. Onsgard ◽  
G. M. Tyce ◽  
S. L. Chinnow ◽  
F. G. Knox ◽  
...  

We tested the hypothesis that dopamine (DA) acts as an autocrine/paracrine regulator of Na(+)-Pi symport in proximal tubules, using opossum kidney (OK) cells as an in vivo model. Both DA and parathyroid hormone (PTH) increased adenosine 3',5'-cyclic monophosphate (cAMP) and inhibited Na(+)-gradient-dependent uptake of 32P but not that of L-[3H]-alanine. Incubation of OK cells with L-dopa, a DA precursor, resulted in accumulation of DA (7.4 nM), a ninefold increase of cAMP in the medium, and an inhibition (-10%) of Na(+)-Pi uptake. Carbidopa, an inhibitor of aromatic-L-amino acid decarboxylase, prevented the formation of DA from L-dopa, the increase in cAMP, and the inhibition of Na(+)-Pi cotransport. Pi-replete OK cells produced more DA (+15%) from L-dopa than Pi-deprived cells; however, the endogenous DA inhibited Na(+)-Pi cotransport both in Pi-deprived and in Pi-replete cells. Thus OK cells can synthesize DA from L-dopa in a quantity sufficient to elicit both the maximum DA-stimulated cAMP accumulation and inhibition of Na(+)-Pi cotransport in the same cell population. Our data, obtained on an in vitro system, support the hypothesis proposing that DA generated in proximal tubular cells can modulate, via cAMP, the Na(+)-Pi symport in the same or adjacent cells. If present in the kidney, this pathway might represent an autocrine/paracrine system that can contribute to regulation of renal Pi homeostasis.


1999 ◽  
Vol 276 (2) ◽  
pp. G322-G330 ◽  
Author(s):  
Brian K. Dieckgraefe ◽  
Danielle M. Weems

The signaling pathways activated in response to gastrointestinal injury remain poorly understood. Previous work has implicated the extracellular signal-regulated kinase (ERK) mitogen-activated protein kinase as a mediator of wound-signal transduction and a possible regulator of epithelial restitution. Monolayer injury resulted in rapid activation of p42 and p44 ERK. Injury-induced ERK activation was blocked by protein kinase C inhibition or by disruption of the cell cytoskeleton. Significant increases in Fos and early growth response (Egr)-1 mRNA levels were stimulated by injury, peaking by 20 min. ERK activation and the induction of Egr-1 mRNA were inhibited in a dose-dependent fashion with PD-98059. Fos mRNA expression was partially blocked by PD-98059. Western blot analysis demonstrated strong expression and nuclear localization of Fos and Egr after wounding. Electrophoretic mobility shift assays demonstrated that nuclear extracts contained a protein that specifically bound double-stranded oligonucleotides containing the Egr consensus binding element. Gel supershift assays demonstrated that the protein-DNA complexes were recognized by anti-Egr antibody. Inhibition of injury-induced ERK activation by PD-98059 or direct interference with Egr by expression of a dominant negative mutant led to significantly reduced in vitro monolayer restitution.


1999 ◽  
Vol 19 (3) ◽  
pp. 2180-2188 ◽  
Author(s):  
Maria-José Lallena ◽  
María T. Diaz-Meco ◽  
Gary Bren ◽  
Carlos V. Payá ◽  
Jorge Moscat

ABSTRACT The atypical protein kinase C (PKC) isotypes (λ/ιPKC and ζPKC) have been shown to be critically involved in important cell functions such as proliferation and survival. Previous studies have demonstrated that the atypical PKCs are stimulated by tumor necrosis factor alpha (TNF-α) and are required for the activation of NF-κB by this cytokine through a mechanism that most probably involves the phosphorylation of IκB. The inability of these PKC isotypes to directly phosphorylate IκB led to the hypothesis that ζPKC may use a putative IκB kinase to functionally inactivate IκB. Recently several groups have molecularly characterized and cloned two IκB kinases (IKKα and IKKβ) which phosphorylate the residues in the IκB molecule that serve to target it for ubiquitination and degradation. In this study we have addressed the possibility that different PKCs may control NF-κB through the activation of the IKKs. We report here that αPKC as well as the atypical PKCs bind to the IKKs in vitro and in vivo. In addition, overexpression of ζPKC positively modulates IKKβ activity but not that of IKKα, whereas the transfection of a ζPKC dominant negative mutant severely impairs the activation of IKKβ but not IKKα in TNF-α-stimulated cells. We also show that cell stimulation with phorbol 12-myristate 13-acetate activates IKKβ, which is entirely dependent on the activity of αPKC but not that of the atypical isoforms. In contrast, the inhibition of αPKC does not affect the activation of IKKβ by TNF-α. Interestingly, recombinant active ζPKC and αPKC are able to stimulate in vitro the activity of IKKβ but not that of IKKα. In addition, evidence is presented here that recombinant ζPKC directly phosphorylates IKKβ in vitro, involving Ser177 and Ser181. Collectively, these results demonstrate a critical role for the PKC isoforms in the NF-κB pathway at the level of IKKβ activation and IκB degradation.


2004 ◽  
Vol 24 (15) ◽  
pp. 6861-6870 ◽  
Author(s):  
Mauro Costa-Mattioli ◽  
Yuri Svitkin ◽  
Nahum Sonenberg

ABSTRACT Translation of poliovirus and hepatitis C virus (HCV) RNAs is initiated by recruitment of 40S ribosomes to an internal ribosome entry site (IRES) in the mRNA 5′ untranslated region. Translation initiation of these RNAs is stimulated by noncanonical initiation factors called IRES trans-activating factors (ITAFs). The La autoantigen is such an ITAF, but functional evidence for the role of La in poliovirus and HCV translation in vivo is lacking. Here, by two methods using small interfering RNA and a dominant-negative mutant of La, we demonstrate that depletion of La causes a dramatic reduction in poliovirus IRES function in vivo. We also show that 40S ribosomal subunit binding to HCV and poliovirus IRESs in vitro is inhibited by a dominant-negative form of La. These results provide strong evidence for a function of the La autoantigen in IRES-dependent translation and define the step of translation which is stimulated by La.


Sign in / Sign up

Export Citation Format

Share Document