scholarly journals Kidney-specific genetic deletion of both AMPK α-subunits causes salt and water wasting

2017 ◽  
Vol 312 (2) ◽  
pp. F352-F365 ◽  
Author(s):  
Yoskaly Lazo-Fernández ◽  
Goretti Baile ◽  
Patricia Meade ◽  
Pilar Torcal ◽  
Laura Martínez ◽  
...  

AMP-activated kinase (AMPK) controls cell energy homeostasis by modulating ATP synthesis and expenditure. In vitro studies have suggested AMPK may also control key elements of renal epithelial electrolyte transport but in vivo physiological confirmation is still insufficient. We studied sodium renal handling and extracellular volume regulation in mice with genetic deletion of AMPK catalytic subunits. AMPKα1 knockout (KO) mice exhibit normal renal sodium handling and a moderate antidiuretic state. This is accompanied by higher urinary aldosterone excretion rates and reduced blood pressure. Plasma volume, however, was found to be increased compared with wild-type mice. Thus blood volume is preserved despite a significantly lower hematocrit. The lack of a defect in renal function in AMPKα1 KO mice could be explained by a compensatory upregulation in AMPK α2-subunit. Therefore, we used the Cre-loxP system to knock down AMPKα2 expression in renal epithelial cells. Combining this approach with the systemic deletion of AMPKα1 we achieved reduced renal AMPK activity, accompanied by a shift to a moderate water- and salt-wasting phenotype. Thus we confirm the physiologically relevant role of AMPK in the kidney. Furthermore, our results indicate that in vivo AMPK activity stimulates renal sodium and water reabsorption.

2006 ◽  
Vol 281 (43) ◽  
pp. 32207-32216 ◽  
Author(s):  
Marianne Suter ◽  
Uwe Riek ◽  
Roland Tuerk ◽  
Uwe Schlattner ◽  
Theo Wallimann ◽  
...  

AMP-activated protein kinase (AMPK) is a heterotrimeric protein kinase that is crucial for cellular energy homeostasis of eukaryotic cells and organisms. Here we report on the activation of AMPK α1β1γ1 and α2β2γ1 by their upstream kinases (Ca2+/calmodulin-dependent protein kinase kinase-β and LKB1-MO25α-STRADα), the deactivation by protein phosphatase 2Cα, and on the extent of stimulation of AMPK by its allosteric activator AMP, using purified recombinant enzyme preparations. An accurate high pressure liquid chromatography-based method for AMPK activity measurements was established, which allowed for direct quantitation of the unphosphorylated and phosphorylated artificial peptide substrate, as well as the adenine nucleotides. Our results show a 1000-fold activation of AMPK by the combined effects of upstream kinase and saturating concentrations of AMP. The two AMPK isoforms exhibit similar specific activities (6 μmol/min/mg) and do not differ significantly by their responsiveness to AMP. Due to the inherent instability of ATP and ADP, it proved impossible to assay AMPK activity in the absolute absence of AMP. However, the half-maximal stimulatory effect of AMP is reached below 2 μm. AMP does not appear to augment phosphorylation by upstream kinases in the purified in vitro system, but deactivation by dephosphorylation of AMPK α-subunits at Thr-172 by protein phosphatase 2Cα is attenuated by AMP. Furthermore, it is shown that neither purified NAD+ nor NADH alters the activity of AMPK in a concentration range of 0–300 μm, respectively. Finally, evidence is provided that ZMP, a compound formed in 5-aminoimidazole-4-carboxamide-1-β-d-ribofuranoside-treated cells to activate AMPK in vivo, allosterically activates purified AMPK in vitro, but compared with AMP, maximal activity is not reached. These data shed new light on physiologically important aspects of AMPK regulation.


2015 ◽  
Vol 290 (34) ◽  
pp. 21032-21041 ◽  
Author(s):  
Naman B. Shah ◽  
Thomas M. Duncan

F-type ATP synthases are rotary nanomotor enzymes involved in cellular energy metabolism in eukaryotes and eubacteria. The ATP synthase from Gram-positive and -negative model bacteria can be autoinhibited by the C-terminal domain of its ϵ subunit (ϵCTD), but the importance of ϵ inhibition in vivo is unclear. Functional rotation is thought to be blocked by insertion of the latter half of the ϵCTD into the central cavity of the catalytic complex (F1). In the inhibited state of the Escherichia coli enzyme, the final segment of ϵCTD is deeply buried but has few specific interactions with other subunits. This region of the ϵCTD is variable or absent in other bacteria that exhibit strong ϵ-inhibition in vitro. Here, genetically deleting the last five residues of the ϵCTD (ϵΔ5) caused a greater defect in respiratory growth than did the complete absence of the ϵCTD. Isolated membranes with ϵΔ5 generated proton-motive force by respiration as effectively as with wild-type ϵ but showed a nearly 3-fold decrease in ATP synthesis rate. In contrast, the ϵΔ5 truncation did not change the intrinsic rate of ATP hydrolysis with membranes. Further, the ϵΔ5 subunit retained high affinity for isolated F1 but reduced the maximal inhibition of F1-ATPase by ϵ from >90% to ∼20%. The results suggest that the ϵCTD has distinct regulatory interactions with F1 when rotary catalysis operates in opposite directions for the hydrolysis or synthesis of ATP.


2021 ◽  
Vol 129 (Suppl_1) ◽  
Author(s):  
Kimberly Ferrero ◽  
Jessica M Pfleger ◽  
Kurt Chuprun ◽  
Eric Barr ◽  
Erhe Gao ◽  
...  

The GPCR kinase GRK2 is highly expressed the heart; importantly, during cardiac injury or heart failure (HF) both levels and activity of GRK2 increase. The role of GRK2 during HF is canonically studied upstream of β-adrenergic desensitization. However, GRK2 has a large interactome and noncanonical functions for this kinase are being uncovered. We have discovered that in the heart, GRK2 translocates to mitochondria ( mtGRK2 ) following injury and is associated with negative effects on cardiac metabolism. Thus, we have sought to identify the mechanism(s) by which GRK2 can regulate mitochondrial function. We hypothesize that mtGRK2 interacts with proteins which regulate bioenergetics and substrate utilization, and this never-before-described role may partially explain the altered mitochondrial phenotype seen following cardiac injury or HF. Stress-induced mitochondrial translocation of GRK2 was validated in neonatal rat ventricular myocytes, murine heart tissue and a cardiac-derived cell line. Consequently, the GRK2 interactome was mapped basally and under stress conditions in vitro, in vivo , and with tagged recombinant peptides. GRK2-interacting proteins were isolated via immunoprecipitation and analyzed via liquid chromatography-mass spectroscopy (LCMS). Proteomics analysis (IPA; Qiagen) identified mtGRK2 interacting proteins which were also involved in mitochondrial dysfunction. Excitingly, Complexes I, II, IV and V (ATP synthase) of the electron transport chain (ETC) were identified in the subset of mtGRK2-dysfunction partners. Several mtGRK2-ETC interactions were increased following stress, particularly those in Complex V. We further established that mtGRK2 phosphorylates some of the subunits of Complex V, particularly the ATP synthase barrel which is critical for ATP production in the heart. Specific amino acid residues on these subunits have been identified using PTM-LCMS and are currently being validated in a murine model of myocardial infarction. To support these data, we have also determined that alterations in either the levels or kinase activity of GRK2 appear to alter the enzymatic activity of Complex V in vitro , thus altering ATP production. In summary, the phosphorylation of the ATP synthesis machinery by mtGRK2 may be regulating some of the phenotypic effects of injured or failing hearts such as increased ROS production and reduced fatty acid metabolism. Research is ongoing in our lab to elucidate the novel role of GRK2 in regulating mitochondrial bioenergetics and cell death, thus uncovering an exciting, druggable novel target for rescuing cardiac function in patients with injured and/or failing hearts.


1996 ◽  
Vol 270 (6) ◽  
pp. L898-L906 ◽  
Author(s):  
I. Y. Haddad ◽  
S. Zhu ◽  
J. Crow ◽  
E. Barefield ◽  
T. Gadilhe ◽  
...  

Alveolar type II (ATII) cells, are often exposed to increased concentration of endogenous and exogenous nitric oxide (.NO). Exposure of freshly isolated rat ATII cells for 2 h to 1-3 microM .NO, generated by S-nitroso-N-penicillamine (SNAP), spermine NONOate, or 3-morpholino-sydnonimine (SIN-1) in the presence of superoxide dismutase, resulted in approximately 60% decrease in the rate of surfactant synthesis, as measured by the rate of incorporation of [methyl-3H]choline into phosphatidylcholine, and 60-80% inhibition of cellular ATP levels, as determined by bioluminescence. Similar results were obtained after incubation of ATII cells with authentic peroxynitrite (0.5 mM) but not SIN-1, a putative generator of peroxynitrite. Addition into the medium of oxyhemoglobin (20 microM), which scavenged .NO, or enhancement of ATII glutathione levels by preincubation with glutathione ester (5 mM) totally prevented the NONOate (100 microM) inhibition of cellular ATP. In contrast to the in vitro findings, normal levels of ATP and lipid synthesis were measured in ATII cells isolated from the lungs of rats that breathed .NO gas (80 ppm) in 21% O2 for 2 h (n = 4). This lack of effect may be due either to the presence of various antioxidants (such as glutathione) in the epithelial lining fluid or to the relatively low concentrations of .NO reaching the alveolar epithelium. We conclude that .NO and peroxynitrite, at concentrations likely to be encountered in vivo during inflammation, decrease ATII cell energy stores and surfactant synthesis, which may lead to derangement of important physiological functions.


1964 ◽  
Vol 206 (1) ◽  
pp. 229-238 ◽  
Author(s):  
Judith G. Pool ◽  
C. F. Borchgrevink

Warfarin added to incubated liver slices inhibits the synthesis of factor VII (proconvertin) in proportion to the log of its concentration; surprisingly, it has the same inhibitory effect on the transport and incorporation of amino acid into protein of the liver slices. This latter finding seems to support the frequently proposed concept that vitamin K has a role in oxidative phosphorylation and that coumarin compounds, by antagonizing vitamin K, uncouple oxidative phosphorylation and thus have a general effect on cell energy supply. However, when we studied the liver of rats depleted of vitamin K the same effect was not seen. Liver slices from such animals produced little factor VII but they incorporated amino acid at the normal rate. Furthermore, administration of warfarin in vivo had the same result as vitamin K depletion: a fall in circulating prothrombin complex but no decrease in either labeling of plasma proteins by intravenous C14-amino acid or incorporation of amino acid into subsequently excised liver slices. There is thus a striking discrepancy between the action of warfarin administered in vitro and that administered in vivo.


1985 ◽  
Vol 249 (3) ◽  
pp. R348-R354 ◽  
Author(s):  
R. Solomon ◽  
M. Taylor ◽  
D. Dorsey ◽  
P. Silva ◽  
F. H. Epstein

The rectal gland of the shark plays a significant role in the homeostasis of extracellular volume. Regulation of rectal gland function is under hormonal control, but the precise identity of the humoral mediator is unknown. Atriopeptin stimulates rectal gland chloride secretion in vivo. This stimulation of epithelial transport is accompanied by systemic and local hemodynamic effects. Atriopeptin also stimulates chloride secretion by the in vitro perfused rectal gland, an effect that is not accompanied by hemodynamic changes. Extracts of shark heart, but not muscle, brain, kidney, or intestine, contain a heat-stable trypsin-sensitive substance capable of in vitro stimulation of rectal gland chloride secretion. Electron micrographic analysis reveals multiple neurosecretory-like granules in atrial cardiocytes that are only rarely seen in ventricular cardiocytes. By using the in vitro perfused gland as a biologic assay, serum obtained after extracellular volume expansion reveals the presence of a rectal gland stimulatory factor that is not present in serum before expansion. These results are consistent with the hypothesis that atriopeptin is present in shark cardiocytes and is released during volume expansion. The atriopeptin stimulates rectal gland chloride secretion, providing a negative feedback mechanism for the regulation of extracellular volume.


2005 ◽  
Vol 288 (5) ◽  
pp. H2412-H2421 ◽  
Author(s):  
Markus Frederich ◽  
Li Zhang ◽  
James A. Balschi

The hypothesis was tested that hypoxia increases AMP-activated protein kinase (AMPK) activity independently of AMP concentration ([AMP]) in heart. In isolated perfused rat hearts, cytosolic [AMP] was changed from 0.2 to 16 μM using metabolic inhibitors during both normal oxygenation (95% O2-5% CO2, normoxia) and limited oxygenation (95% N2-5% CO2, hypoxia). Total AMPK activity measured in vitro ranged from 2 to 40 pmol·min−1·mg protein−1 in normoxic hearts and from 5 to 55 pmol·min−1·mg protein−1 in hypoxic hearts. The dependence of the in vitro total AMPK activity on the in vivo cytosolic [AMP] was determined by fitting the measurements from individual hearts to a hyperbolic equation. The [AMP] resulting in half-maximal total AMPK activity ( A0.5) was 3 ± 1 μM for hypoxic hearts and 28 ± 13 μM for normoxic hearts. The A0.5 for α2-isoform AMPK activity was 2 ± 1 μM for hypoxic hearts and 13 ± 8 μM for normoxic hearts. Total AMPK activity correlated with the phosphorylation of the Thr172 residue of the AMPK α-subunit. In potassium-arrested hearts perfused with variable O2 content, α-subunit Thr172 phosphorylation increased at O2 ≤ 21% even though [AMP] was <0.3 μM. Thus hypoxia or O2 ≤ 21% increased AMPK phosphorylation and activity independently of cytosolic [AMP]. The hypoxic increase in AMPK activity may result from either direct phosphorylation of Thr172 by an upstream kinase or reduction in the A0.5 for [AMP].


2018 ◽  
Vol 215 (6) ◽  
pp. 1709-1727 ◽  
Author(s):  
Kelly Mitchell ◽  
Laura Barreyro ◽  
Tihomira I. Todorova ◽  
Samuel J. Taylor ◽  
Iléana Antony-Debré ◽  
...  

The surface molecule interleukin-1 receptor accessory protein (IL1RAP) is consistently overexpressed across multiple genetic subtypes of acute myeloid leukemia (AML) and other myeloid malignancies, including at the stem cell level, and is emerging as a novel therapeutic target. However, the cell-intrinsic functions of IL1RAP in AML cells are largely unknown. Here, we show that targeting of IL1RAP via RNA interference, genetic deletion, or antibodies inhibits AML pathogenesis in vitro and in vivo, without perturbing healthy hematopoietic function or viability. Furthermore, we found that the role of IL1RAP is not restricted to the IL-1 receptor pathway, but that IL1RAP physically interacts with and mediates signaling and pro-proliferative effects through FLT3 and c-KIT, two receptor tyrosine kinases with known key roles in AML pathogenesis. Our study provides a new mechanistic basis for the efficacy of IL1RAP targeting in AML and reveals a novel role for this protein in the pathogenesis of the disease.


1978 ◽  
Vol 234 (5) ◽  
pp. F424-F431
Author(s):  
J. B. Pritchard ◽  
G. Booz ◽  
A. Kleinzeller

Isolated renal tubules and renal clearance techniques were used to characterize the renal handling of 2-deoxy-D-galactose (2-d-Gal) by the winter flounder (Pseudopleuronectes americanus). In vitro, energy-dependent, pH-sensitive uptake of 2-d-Gal (2–100 micron) was seen at the antiluminal face of the cell. Clearance measurements showed net secretion of 2-d-Gal in vivo. The mean clearance of 2-d-Gal in 18 fish was 0.98 +/- 0.16 ml/h while the glomerular filtration rate (GFR) was only 0.37 +/- 0.10 ml/h. Secretion was associated with marked renal accumulation of both 2-d-Gal and phosphorylated derivatives (2-d-Gal-1-phosphate). Tissue-to-plasma ratios (T/P) averaged 19 for free sugar and 59 for total sugar. Both clearance ratio and T/P were reduced to approximately 1 by injection of galactose (2.5 mmol/kg) simultaneously with 2-d-Gal (25 mumol/kg). Phlorizin (2.5 mumol/kg) increased net 2-d-Gal secretion, whereas glucose (2.5 mmol/kg) produced no change in secretion. Both compounds depressed 2-d-Gal T/P. This result suggests the presence of readsorptive transport at the brush border, sensitive to glucose and phlorizin.


2019 ◽  
Vol 21 (Supplement_6) ◽  
pp. vi43-vi43
Author(s):  
Hamid Suhail ◽  
Rattan Ramandeep ◽  
Giri Shailendra ◽  
Ana deCarvalho ◽  
Steven Kalkanis ◽  
...  

Abstract Glioblastoma (GBM) is a highly glycolytic aggressive brain tumor characterized by increased proliferation and resistance to chemotherapy and radiotherapy. AMPK has been reported as tumor suppressor and reprograms the cellular metabolic pathways and produces a metabolic checkpoint on the cell cycle though mTORC1, p53 and other modulators involved in cell proliferation, growth, survival and autophagy. The AMPK activity is diminished in gastric, breast and ovarian tumor cells by activated PI3K-AKT pathways. Cancer cells are able to reprogram their energy metabolism to compensate their high bioenergetic demands needed for their aggressive growth and survival. Curcumin exhibits pleiotropic properties and activate MAPK and leads to suppress p53, Wnt/β-catenin, SHH and PI3K-AKT signaling pathways. Curcumin or diferuloylmethane is a yellow polyphenol extracted from the rhizome of turmeric (Curcuma longa). The absorption, biodistribution, metabolism, and elimination studies of curcumin have, unfortunately, shown only poor absorption, rapid metabolism, and elimination of curcumin as major reasons for poor bioavailability of this interesting polyphenolic compound. We have engineered a curcumin-based nanoparticle (Curc-NP) which demonstrates high water solubility. Curc-NP was effectively transported into the cells by nanoparticles through endocytosis and localized around the nuclei in the cytoplasms. In vitro studies proved that the cytotoxicity of Curc-NP is more effective against U-251 cell line in a dose-dependent manner. Systemic delivery of Curc-NP led to preferentially accumulation in an orthotopic preclinical glioma model minimizing systemic toxic effect. Multicolor microscopy images of the tumor tissue showed that Curc-NP particles were internalized inside tumor cells selectively and localized within nuclei. Curc-NP demonstrated to restore the dysregulated AMPK activity in glioma cells. Curc-NP-induced AMPK activation resulted in inhibition of oncogenic signalling pathways in glioma. Curc-NP-induced metabolic reprograming in glioma cells will be examined and the in vivo therapeutic efficacy of Curc-NP in an experimental rat model of GBM will also be evaluated.


Sign in / Sign up

Export Citation Format

Share Document