scholarly journals Diagnostic roles of urinary kidney injury molecule 1 and soluble C5b-9 in acute tubulointerstitial nephritis

2019 ◽  
Vol 317 (3) ◽  
pp. F584-F592 ◽  
Author(s):  
Wen-Ting Zhao ◽  
Jun-Wen Huang ◽  
Ping-Ping Sun ◽  
Tao Su ◽  
Jia-Wei Tang ◽  
...  

Acute tubulointerstitial nephritis (ATIN) is a common cause of acute kidney injury characterized by inflammatory cells infiltrating in the interstitium. The present study aimed to explore noninvasive biomarkers that might indicate activity of pathological injuries and help direct treatment. Fifty-four patients with clinical-pathologically diagnosed ATIN from January 1, 2014, to June 30, 2016, at Peking University First Hospital were enrolled. Urine samples were collected on the morning of renal biopsy and assessed for urinary kidney injury molecule-1 (KIM-1) and urinary soluble C5b-9 (sC5b-9). Immunofluorescence staining for KIM-1 and C5b-9 was performed in biopsied kidney sections from ATIN cases. The clinical and pathological relevance of the two urinary biomarkers was analyzed. Both urinary KIM-1 and sC5b-9 values were significantly elevated in patients with ATIN compared with healthy controls. The urinary KIM-1 level positively correlated with urinary N-acetyl-β-d-glucosaminidase ( r = 0. 542, P = 0.001) and the pathological tubular injury score ( r = 0.469, P < 0.001), whereas the urinary sC5b-9 level was related to pathological activity scores for tubular injury ( r = 0.413, P = 0.002), interstitial inflammation ( r = 0.388, P = 0.004), and treatment response ( r = 0.564, P < 0.001). Urinary KIM-1 tended to have better diagnostic value for tubular injury than urinary sC5b-9, whereas only urinary sC5b-9 was able to demonstrate severe interstitial inflammation. A combination of urinary KIM-1 and sC5b-9 had an area under the receiver-operating characteristic curve of 0.864 (95% confidence interval: 0.766–0.963, P < 0.001, sensitivity: 75%, specificity: 88%) for acute tissue injury in ATIN. KIM-1 expression was markedly increased in renal tubular cells in both ATIN and acute tubular necrosis conditions, whereas a significant upregulation of C5b-9 was only detected in the tubular cells and interstitial cells in ATIN cases. Urinary KIM-1 is a specific biomarker for renal tubular injury in ATIN, whereas urinary sC5b-9 is valuable in demonstrating severe interstitial inflammation. The combination of these two biomarkers helps identify patients at an acute injury stage and, therefore, might facilitate clinical evaluation and guide immunosuppressive therapy.

2021 ◽  
Vol 12 (12) ◽  
Author(s):  
Huizhen Wang ◽  
Yifan Wang ◽  
Xin Wang ◽  
Huimi Huang ◽  
Jingfu Bao ◽  
...  

AbstractPhosphatase and Tensin Homolog on chromosome Ten (PTEN) has emerged as a key protein that governs the response to kidney injury. Notably, renal adaptive repair is important for preventing acute kidney injury (AKI) to chronic kidney disease (CKD) transition. To test the role of PTEN in renal repair after acute injury, we constructed a mouse model that overexpresses PTEN in renal proximal tubular cells (RPTC) by crossing PTENfl-stop-fl mice with Ggt1-Cre mice. Mass spectrometry-based proteomics was performed after subjecting these mice to ischemia/reperfusion (I/R). We found that PTEN was downregulated in renal tubular cells in mice and cultured HK-2 cells subjected to renal maladaptive repair induced by I/R. Renal expression of PTEN negatively correlated with NGAL and fibrotic markers. RPTC-specific PTEN overexpression relieved I/R-induced maladaptive repair, as indicated by alleviative tubular cell damage, apoptosis, and subsequent renal fibrosis. Mass spectrometry analysis revealed that differentially expressed proteins in RPTC-specific PTEN overexpression mice subjected to I/R were significantly enriched in phagosome, PI3K/Akt, and HIF-1 signaling pathway and found significant upregulation of CHMP2A, an autophagy-related protein. PTEN deficiency downregulated CHMP2A and inhibited phagosome closure and autolysosome formation, which aggravated cell injury and apoptosis after I/R. PTEN overexpression had the opposite effect. Notably, the beneficial effect of PTEN overexpression on autophagy flux and cell damage was abolished when CHMP2A was silenced. Collectively, our study suggests that PTEN relieved renal maladaptive repair in terms of cell damage, apoptosis, and renal fibrosis by upregulating CHMP2A-mediated phagosome closure, suggesting that PTEN/CHMP2A may serve as a novel therapeutic target for the AKI to CKD transition.


Hypertension ◽  
2017 ◽  
Vol 70 (suppl_1) ◽  
Author(s):  
Tomoaki Nagao ◽  
Takafumi Okura ◽  
Akiko Tanino ◽  
Ken-ichi Miyoshi ◽  
Masayoshi Kukida ◽  
...  

Osteopontin (OPN), a secreted glycosylated phosphoprotein and pro-inflammatory cytokine, has been implicated in the pathology of several renal conditions, especially renal fibrosis in chronic kidney disease. OPN is slightly expressed in renal tubular cells in normal condition, but after acute tubular injury, OPN is highly induced in these cells. However, the role of induced OPN is still unclear. The aim of this study was to clarify the roles of OPN in acute kidney injury (AKI). AKI was induced in wild type (WT) and OPN knockout (KO) mice by using folic acid (FA) injection (0.35mg/kg). After 2days of injection, 34% of WT mice died, whereas 54% of KO died from renal failure. Kidneys from survived mice were removed and the renal histological changes, protein expression were examined. BUN and Creatinine levels were markedly elevated in WT-AKI and KO-AKI mice (BUN: WT-sham; 25.7±4.7mg/dl, WT-AKI; 315.0±173.2mg/dl, KO-AKI; 337.7±163.7mg/dl, Creatinine: WT-sham; 0.08±0.03 mg/dl, WT-AKI; 1.60±0.87 mg/dl, KO-AKI; 1.80±0.94 mg/dl). Renal OPN mRNA expression was increased in WT-AKI mice compared to WT-sham mice (p<0.05). High levels of OPN expression in renal tubular cells were induced in WT-AKI mice. TUNEL positive tubular cells were increased in KO-AKI mice compared to WT-AKI mice. In immunohistochemical analysis, Kidney injury molecules 1 (Kim-1) positive tubular cells were also highly increased in KO-AKI mice compared to WT-AKI mice. In contrast, LC3B (autophagy related protein) positive tubular cells were decreased in KO-AKI mice compared to WT-AKI mice. These results indicate that OPN deficiency exacerbates tubular injury via through the inhibiting autophagy in folic acid induced AKI mice.


2020 ◽  
Vol 21 (22) ◽  
pp. 8564
Author(s):  
Seok Jong Song ◽  
Su-mi Kim ◽  
Sang-ho Lee ◽  
Ju-Young Moon ◽  
Hyeon Seok Hwang ◽  
...  

Introduction: A recent study showed that early renal tubular injury is ameliorated in Nod-like receptor pyrin domain-containing protein 3 (NLRP3) KO mice with rhabdomyolysis-induced acute kidney injury (RIAKI). However, the precise mechanism has not been determined. Therefore, we investigated the role of NLRP3 in renal tubular cells in RIAKI. Methods: Glycerol-mediated RIAKI was induced in NLRP3 KO and wild-type (WT) mice. The mice were euthanized 24 h after glycerol injection, and both kidneys and plasma were collected. HKC-8 cells were treated with ferrous myoglobin to mimic a rhabdomyolytic environment. Results: Glycerol injection led to increase serum creatinine, aspartate aminotransferase (AST), and renal kidney injury molecule-1 (KIM-1) level; renal tubular necrosis; and apoptosis. Renal injury was attenuated in NLRP3 KO mice, while muscle damage and renal neutrophil recruitment did not differ between NLRP3 KO mice and WT mice. Following glycerin injection, increases in cleaved caspase-3, poly (ADP-ribose) polymerase (PARP), and a decrease in the glutathione peroxidase 4 (GPX-4) level were observed in the kidneys of mice with RIAKI, and these changes were alleviated in the kidneys of NLRP3 KO mice. NLRP3 was upregulated, and cell viability was suppressed in HKC-8 cells treated with ferrous myoglobin. Myoglobin-induced apoptosis and lipid peroxidation were significantly decreased in siNLRP3-treated HKC-8 cells compared to ferrous myoglobin-treated HKC-8 cells. Myoglobin reduced the mitochondrial membrane potential and increased mitochondrial fission and reactive oxygen species (ROS) and lipid peroxidation levels, which were restored to normal levels in NLRP3-depleted HKC-8 cells. Conclusions: NLRP3 depletion ameliorated renal tubular injury in a murine glycerol-induced acute kidney injury (AKI) model. A lack of NLRP3 improved tubular cell viability via attenuation of myoglobin-induced mitochondrial injury and lipid peroxidation, which might be the critical factor in protecting the kidney.


2017 ◽  
Vol 312 (3) ◽  
pp. F502-F515 ◽  
Author(s):  
Yingfeng Shi ◽  
Liuqing Xu ◽  
Jinhua Tang ◽  
Lu Fang ◽  
Shuchen Ma ◽  
...  

Histone deacetylase 6 (HDAC6) inhibition has been reported to protect against ischemic stroke and prolong survival after sepsis in animal models. However, it remains unknown whether HDAC6 inhibition offers a renoprotective effect after acute kidney injury (AKI). In this study, we examined the effect of tubastatin A (TA), a highly selective inhibitor of HDAC6, on AKI in a murine model of glycerol (GL) injection-induced rhabdomyolysis. Following GL injection, the mice developed severe acute tubular injury as indicated by renal dysfunction; expression of neutrophil gelatinase-associated lipocalin (NGAL), an injury marker of renal tubules; and an increase of TdT-mediated dUTP nick-end labeling (TUNEL)-positive tubular cells. These changes were companied by increased HDAC6 expression in the cytoplasm of renal tubular cells. Administration of TA significantly reduced serum creatinine and blood urea nitrogen levels as well as attenuated renal tubular damage in injured kidneys. HDAC6 inhibition also resulted in decreased expression of NGAL, reduced apoptotic cell, and inactivated caspase-3 in the kidney after acute injury. Moreover, injury to the kidney increased phosphorylation of nuclear factor (NF)-κB and expression of multiple cytokines/chemokines including tumor necrotic factor-α and interleukin-6 and monocyte chemoattractant protein-1, as well as macrophage infiltration. Treatment with TA attenuated all those responses. Finally, HDAC6 inhibition reduced the level of oxidative stress by suppressing malondialdehyde (MDA) and preserving expression of superoxide dismutase (SOD) in the injured kidney. Collectively, these data indicate that HDAC6 contributes to the pathogenesis of rhabdomyolysis-induced AKI and suggest that HDAC6 inhibitors have therapeutic potential for AKI treatment.


2018 ◽  
Vol 315 (6) ◽  
pp. F1720-F1731 ◽  
Author(s):  
Lung-Chih Li ◽  
Jenq-Lin Yang ◽  
Wen-Chin Lee ◽  
Jin-Bor Chen ◽  
Chien-Te Lee ◽  
...  

High levels of serum free fatty acids (FFAs) and proteinuria have been implicated in the pathogenesis of obesity-related nephropathy. CD36, a class B scavenger receptor, is highly expressed in the renal proximal tubules and mediates FFA uptake. It is not clear whether FFA- and proteinuria-mediated CD36 activation coordinates NLRP3 inflammasomes to induce renal tubular injury and inflammation. In this study, we investigated the roles of CD36 and NLRP3 inflammasomes in FFA-induced renal injury in high-fat diet (HFD)-induced obesity. HFD-fed C57BL/6 mice and palmitate-treated HK2 renal tubular cells were used as in vivo and in vitro models. Immunohistochemical staining showed that CD36, IL-1β, and IL-18 levels increased progressively in the kidneys of HFD-fed mice. Sulfo- N-succinimidyl oleate (SSO), a CD36 inhibitor, attenuated the HFD-induced upregulation of NLRP3, IL-1β, and IL-18 and suppressed the colocalization of NLRP3 and ASC in renal tubular cells. In vitro, SSO abolished the palmitate-induced activation of IL-1β, IL-18, and caspase-1 in HK2 proximal tubular cells. Furthermore, treatment with SSO and the knockdown of caspase-1 expression by siRNA both inhibited palmitate-induced cell death and apoptosis in HK2 cells. Collectively, palmitate causes renal tubular inflammation, cell death, and apoptosis via the CD36/NLRP3/caspase-1 axis, which may explain, at least in part, the mechanism underlying FFA-related renal tubular injury. The blockade of CD36-induced cellular processes is therefore a promising strategy for treating obesity-related nephropathy.


2019 ◽  
Vol 143 (10) ◽  
pp. 1212-1224 ◽  
Author(s):  
Mingyu Cheng ◽  
Xin Gu ◽  
Elba A. Turbat-Herrera ◽  
Guillermo A. Herrera

Context.— Light chain–associated acute tubulointerstitial nephritis (LC-ATIN) is a variant of light chain proximal tubulopathy (LCPT). It is characterized by interstitial inflammation with tubulitis and deposition of monoclonal light chains in the tubulointerstitium. LC-ATIN is a rather poorly recognized pattern of LCPT and not much is known about this entity. Objective.— To determine the clinicopathologic features of patients with LC-ATIN and investigate the proximal tubular injury and mechanism of interstitial inflammation in LC-ATIN. Design.— A total of 38 cases of LC-ATIN were identified from the archives of 5043 renal biopsy specimens. In all cases, routine light microscopic examination, immunofluorescence, and electron microscopic examination were performed. In selected cases, immunofluorescent staining of dendritic cells and immunohistochemical staining for 4 tubular injury markers—KIM-1, p53, bcl-2, and Ki-67—were performed. Results.— A characteristic finding in LC-ATIN cases was immunofluorescence staining of monoclonal light chains along tubular basement membranes in linear fashion and inside proximal tubular cells with a granular pattern. No monoclonal light chains were present in glomerular or vascular compartments confirmed with immunofluorescence, electron microscopy, and ultrastructural gold labeling. Ten of 15 LC-ATIN cases (67%) were concurrently positive for the 4 tubular injury markers. Dendritic cells were identified within the tubulointerstitium in the renal biopsy specimens, interacting with surrounding tubules with light-chain deposits and inflammatory cells. Conclusions.— Significant proximal tubular injury occurs associated with LC-ATIN, and the monoclonal light chains accumulated in proximal tubular cells contribute to the injury. Dendritic cells are involved in the pathogenesis of interstitial inflammation in LC-ATIN.


PLoS ONE ◽  
2015 ◽  
Vol 10 (5) ◽  
pp. e0126229 ◽  
Author(s):  
Tatsuki Matsumoto ◽  
Madoka Urushido ◽  
Haruna Ide ◽  
Masayuki Ishihara ◽  
Kazu Hamada-Ode ◽  
...  

2018 ◽  
Author(s):  
Lauren Brilli Skvarca ◽  
Hwa In Han ◽  
Eugenel B. Espiritu ◽  
Maria A. Missinato ◽  
Elizabeth R. Rochon ◽  
...  

ABSTRACTAcute kidney injury (AKI) is a serious disorder for which there is no approved pharmaceutical treatment. Following injury, native nephrons display limited regenerative capabilities, relying on the dedifferentiation and proliferation of renal tubular epithelial cells (RTECs) that survive the insult. Previously, we identified 4-(phenylthio)butanoic acid (PTBA), a histone deacetylase inhibitor (HDI) that enhances renal recovery and showed that PTBA treatment increased RTEC proliferation and reduced renal fibrosis. Here, we investigated the regenerative mechanisms of PTBA in zebrafish models of larval renal injury and adult cardiac injury. With respect to renal injury, we showed that delivery of PTBA using an esterified prodrug (UPHD25) increases the reactivation of the renal progenitor gene Pax2a, enhances dedifferentiation of RTECs, reduces Kidney injury molecule-1 expression, and lowers the number of infiltrating macrophages. Further, we find that the effects of PTBA on RTEC proliferation depend upon retinoic acid signaling and demonstrate the therapeutic properties of PTBA are not restricted to the kidney but also increase cardiomyocyte proliferation and decrease fibrosis following cardiac injury in adult zebrafish. These studies provide key mechanistic insights into how PTBA enhances tissue repair in models of acute injury and lay the groundwork for translating this novel HDI into the clinic.SUMMARY STATEMENTMortality associated with acute kidney injury (AKI) is in part due to limited treatments available to ameliorate kidney injury. We identified a compound that enhances AKI recovery by promoting cellular dedifferentiation.


2019 ◽  
Vol 20 (20) ◽  
pp. 5238 ◽  
Author(s):  
Daniela Maria Tanase ◽  
Evelina Maria Gosav ◽  
Smaranda Radu ◽  
Claudia Florida Costea ◽  
Manuela Ciocoiu ◽  
...  

Acute kidney injury (AKI) following platinum-based chemotherapeutics is a frequently reported serious side-effect. However, there are no approved biomarkers that can properly identify proximal tubular injury while routine assessments such as serum creatinine lack sensitivity. Kidney-injury-molecule 1 (KIM-1) is showing promise in identifying cisplatin-induced renal injury both in vitro and in vivo studies. In this review, we focus on describing the mechanisms of renal tubular cells cisplatin-induced apoptosis, the associated inflammatory response and oxidative stress and the role of KIM-1 as a possible biomarker used to predict cisplatin associated AKI.


Sign in / Sign up

Export Citation Format

Share Document