scholarly journals Flow resistance along the rat renal tubule

2018 ◽  
Vol 315 (5) ◽  
pp. F1398-F1405 ◽  
Author(s):  
Gabrielle G. Gilmer ◽  
Venkatesh G. Deshpande ◽  
Chung-Lin Chou ◽  
Mark Knepper

The Reynolds number in the renal tubule is extremely low, consistent with laminar flow. Consequently, luminal flow can be described by the Hagen-Poiseuille laminar flow equation. This equation calculates the volumetric flow rate from the axial pressure gradient and flow resistance, which is dependent on the length and diameter of each renal tubule segment. Our goal was to calculate the pressure drop along each segment of the renal tubule and to determine the points of highest resistance. When the Hagen-Poiseuille equation was used for rat superficial nephrons based on known tubule flow rates, lengths, and diameters, it was found that the maximum pressure drop occurred in two segments: the thin descending limbs of Henle and the inner medullary collecting ducts. The high resistance in the thin descending limbs is due to their small diameters. The steep pressure drop observed in the inner medullary collecting ducts is due to the convergent structure of the tubules, which channels flow into fewer and fewer tubules toward the papillary tip. For short-looped nephrons, the calculated glomerular capsular pressure matched measured values, even with the high collecting duct flow rates seen in water diuresis, provided that tubule compliance was taken into account. In long-looped nephrons, the greater length of thin limb segments is likely compensated for by a larger luminal diameter. Simulation of the effect of proximal diuretics, namely acetazolamide or type 2 sodium-glucose transporter inhibitors, predicts a substantial back pressure in Bowman’s capsule, which may contribute to observed decreases in glomerular filtration rate.

1975 ◽  
Vol 229 (1) ◽  
pp. 13-17 ◽  
Author(s):  
DJ Marsh ◽  
CM Martin

Hydrostatic pressures were measured in cortical tubules, long loops of Henle, terminal collecting ducts, and in vasa recta in hamsters. In hydropenia, the loops of Henle and terminal collecting ducts provided the major fluid flow resistances, as judged by the location of hydrostatic pressure drops. In mannitol or saline diuresis, hydrostatic pressures in all tubular segments increased, but pressure drops in loops of Henle disappeared, indicating dilatation of loops. The major pressure drop was in terminal collecting ducts, especially in ducts of Bellini, even though these tubular segments also dilated. At highest urine flows, cortical tubule pressures were higher with the ureter and renal pelvis intact than when they were excised, suggesting laminar flow in the ureter adds a flow resistance at high flows. The pressure drop across the medullary capillary bed was 1-2 mmHg. The summation of medullary capillary hydrostatic and colloid osmotic pressures favored fluid uptake from the interstitium, a relationship enhanced by vasa recta geometry which ensures that descending vasa recta offer 4 times the flow resistance of ascending vessels.


1973 ◽  
Vol 82 (6) ◽  
pp. 827-830 ◽  
Author(s):  
John Cavo ◽  
Joseph H. Ogura ◽  
Donald G. Sessions ◽  
J. Roger Nelson

The role of the upper airway (the breathing passage above the trachea) in maintaining the normal junction of the respiratory system has been suggested by previous investigators. During a tracheotomy the upper airway is by-passed by a prosthetic metal or plastic tube which is placed into the trachea through the neck. In order to determine which, among the most commonly used tracheotomy tubes, most closely simulate the flow resistance of the adult human upper airway, a series of varying flow rates were passed through different sized tubes. Pressure drops were recorded and resistance values were thereby determined. Our data was compared with previously determined values for flow resistance of the adult human upper airway. Resistance related to turbulent and laminar flow was considered. On the basis of our data we have suggested that large caliber tracheotomy tubes be used in adult patients in whom the prolonged need for a tracheotomy is anticipated.


2018 ◽  
Vol 32 (S1) ◽  
Author(s):  
Gabrielle Gilmer ◽  
Venkatesh Deshpande ◽  
Jurgen Schnermann ◽  
Mark Knepper

1990 ◽  
Vol 259 (5) ◽  
pp. F801-F808 ◽  
Author(s):  
F. M. Mehrgut ◽  
L. M. Satlin ◽  
G. J. Schwartz

Newborn rabbits maintain a state of hypochloremic metabolic alkalosis with plasma HCO3- concentrations generally exceeding 27 mM. The large amounts of potential net base in mother's milk probably contribute to the generation of this alkalosis. We surmised that immature handling of H+ or HCO3- by the neonatal collecting duct helps maintain this alkalosis. Net HCO3- transport was measured in perfused collecting ducts taken from maturing rabbits, in solutions simulating adult rabbit plasma ultrafiltrate and then in presence of Cl(-)-free bathing solution. Cortical collecting ducts (CCD) from newborn and 4-wk-old rabbits failed to secrete HCO3- under baseline conditions and could not be stimulated to secrete HCO3- in Cl(-)-free bath. Neonatal segments perfused at very slow flow rates showed significant HCO3- absorption; inhibition of HCO3- secretion by removal of luminal Cl- revealed a substantial HCO3- absorptive flux. Segments from 6-wk-old and mature animals secreted net HCO3- and generally showed more than a fivefold increase in HCO3- secretion after Cl- removal from the bath. Outer medullary collecting ducts (OMCD) from newborn rabbits absorbed HCO3- at rates approaching that of mature segments. We conclude that relatively high rates of HCO3- absorption in OMCD and lack of HCO3- secretion in CCD may contribute to the metabolic alkalosis of the neonatal rabbit.


Author(s):  
Chunyu Yin ◽  
Xiaoyong Yang ◽  
Jie Wang

Recuperator is one of the key components in the helium-turbine cycle coupled with High Temperature Gas cooled Reactor (HTGR). Synthetically considering the heat transfer coefficients, the pressure drop and installation space of recuperator, it is obviously a trend to use compact heat exchanger as recuperator in nuclear power plant. Recuperator recovers heat from the turbine exhaust gas. It promotes the cycle efficiency over entire power range and in all typical modes including start up and shut down modes. The recuperator’s heat transfer coefficients, height, pressure drop have effect on the recuperator’s effectiveness. The main purpose of this paper is to present the law of heat transfer and flow resistance in laminar flow compact exchanger. Based on the similarity theory, the dimensionless parameters of the plate-fin heat exchanger is given in this paper; and then the the dimensionless analysis of the over-all heat transfer coefficient, recuperator’s effectiveness and flow resistance is presented. Furthermore, relationship between the pressure drop and length is also developed.


Energies ◽  
2020 ◽  
Vol 13 (5) ◽  
pp. 1202
Author(s):  
Muhsin Kilic ◽  
Mehmet Aktas ◽  
Gokhan Sevilgen

This research work presents a comparative thermal performance assessment of the laminar flow cooling blocks produced for automotive headlight assembly using a high power Light Emitting Diode (LED) chip. A three-dimensional numerical model with conjugate heat transfer in solid and fluid domains was used. Laminar flow was considered in the present analysis. The validation of the numerical model was realized by using the measured data from the test rig. It was observed that substantial temperature variations were occurred around the LED chip owing to volumetric heat generation. The cooling board with lower height performs better thermal performance but higher pressure drop for the same mass flow rates. The cooling board with the finned cover plate performs better thermal performance but results in an increased pressure drop for the same mass flow rates. Increasing the power of the LED results in higher temperature values for the same mass flow rates. The junction temperature is highly dependent on the mass flow rates and LED power. It can be controlled by means of the mass flow rate of the coolant fluid. New Nusselt number correlations are proposed for laminar flow mini-channel liquid cooling block applications.


1967 ◽  
Vol 7 (04) ◽  
pp. 369-376 ◽  
Author(s):  
R.A. Ritter ◽  
J.P. Batycky

Abstract A numerical technique has been developed to permit establishing the pressure gradient associated with laminar flow of thixotropic liquids through long pipelines. For this purpose the pipeline is divided into a number of radial and longitudinal increments within which rheological properties of the fluid may be considered as constant at any time. Then, provided only that the fluid flow curve is defined at every duration of shear, it is possible to predict the instantaneous pressure gradient at any cross-section along the pipeline for each desired flow rate and pipe size. The technique consists of an iterative integration of shear rate to establish the appropriate value of the wall shear stress at each location. Consistency of fluid in the increment is determined by the flow history of that increment, while the radial flow) associated with variations in velocity profile is accounted for by adjusting the width and radial position of the increment. A number of pressure profiles, computed at each of several flow rates, provide a convenient basis for pipeline design and pump selection. Introduction In recent years, considerable attention has been given to predicting pressure drop associated with the isothermal laminar flow of time-independent non-Newtonian fluids in pipes and annuli. The approach generally has been m develop analytical relationships between flow rate and pressure drop based on simple constitutive models which hopefully provide an approximate description of the rheological properties of the fluid. Analytical solutions are highly desirable since the influence of all pertinent parameters can be readily determined. Unfortunately, however, this approach is restricted to simple flow geometries and frequently leads to erroneous results due to inadequacies in the model. In certain cases a solution may be obtained through applying appropriate numerical techniques For example, a digital computer program is available for predicting the velocity profile and pressure drop encountered by any Newtonian or time-independent non-Newtonian fluid flowing under laminar conditions in a cylindrical pipe or annulus. In this paper the consistency behavior of the fluid need only be described in terms of basic rheological data. Analyzing flow systems involving fluids with time-dependent rheological characteristics is considerably more complicated since substantial changes in consistency may occur because of sustained shear action. This sensitivity to shear frequently persists for several hours. Consequently, variations in pressure drop and/or flow rate resulting from the aging process and addition of unsheared or partially sheared fluid to the system must be considered for purposes of pipeline design. This paper outlines a numerical method for predicting the transient and steady-state laminar flow behavior of a thixotropic liquid in a pipeline of arbitrary length (i.e., at a specified constant flow rate, the instantaneous pressure gradient may be determined at any time after start up and at any location along the pipeline). Several such pressure gradient profiles computed at several flow rates, may be combined to produce a complete portrait of the system response. This flow portrait provides a reasonable basis for pipeline design and for selecting a suitable pump characteristic. TIME-DEPENDENT RHEOLOGICAL BEHAVIOR The most familiar time-dependent rheological properties are those exhibited by thixotropic liquids. Many of these materials, particularly thixotropic crude oils, generally display an apparent yield stress in that a finite pressure gradient is required to initiate flow. Then, under the influence of sustained shear at a constant shear rate, the consistency systematically decreases to some final limiting value. SPEJ P. 369ˆ


Author(s):  
Ali Tamayol ◽  
Naga S. K. Gunda ◽  
Mohsen Akbari ◽  
Sushanta K. Mitra ◽  
Majid Bahrami

Pressure drop through micro-pillar-integrated mini/microchannels is studied experimentally and analytically. Following our previous studies, the low aspect ratio micropillars embedded in a microchannel are modeled as a porous medium sandwiched between channel walls. The pressure drop is expressed as a function of the salient geometrical parameters such as channel dimension, diameter and spacing between the adjacent cylinders as well as their arrangement. To verify the developed model, several silicon/glass samples with and without integrated pillars are fabricated using the deep reacting ion etching (DRIE) technique. Pressure drop measurements are performed over a range of water flow rates ranging from 0.1 ml/min to 0.5 ml/min. The proposed model is successfully verified with the present experimental data. A parametric study is performed by employing the proposed model, which shows that the flow resistance has a reverse relationship with the micro-pillar diameter and the mini/microchannel porosity. In addition, staggered arrangements have a significantly lower flow resistance than squared arrays of pillars especially in dense structures.


2001 ◽  
Author(s):  
Ho Joon Park ◽  
Sang Young Son ◽  
Mun Cheol Choi ◽  
Geunbae Lim ◽  
In-Seob Song ◽  
...  

Abstract This paper investigated experimentally effects of the temperature-dependent property on the laminar flow characteristics in the micro-channel, where water was used as a working fluid. A rectangular straight micro-channel was fabricated with the dimension of 57 μm (H) × 200 μm (W) × 48050 μm (L), in which the resistance temperature detectors (RTDs) were integrated to measure precise temperatures of the fluid directly on the inside-surface of the channel wall. A micro-heater was also installed at the outlet of the channel to generate the heat flux. We measured pressure drop by increasing mass flow rate and the applied heating power. At the same time, micro-Particle Image Velocimetry (micro-PIV) [1] measured the detailed velocity fields along the microchannel, where the wall temperature varied. Based on the pressure drop and Micro-PIV measurement, it was determined that the variation of the fluid property along the microchannel has an effect significantly on flow resistance but not considerably on the velocity profile. Also, it was observed that flow resistance and velocity field shows a good agreement with those estimated in the macro laminar theory under our experimental conditions.


Sign in / Sign up

Export Citation Format

Share Document