scholarly journals Myosin 1e is a component of the glomerular slit diaphragm complex that regulates actin reorganization during cell-cell contact formation in podocytes

2013 ◽  
Vol 305 (4) ◽  
pp. F532-F544 ◽  
Author(s):  
J. Bi ◽  
S. E. Chase ◽  
C. D. Pellenz ◽  
H. Kurihara ◽  
A. S. Fanning ◽  
...  

Glomerular visceral epithelial cells, also known as podocytes, are critical to both normal kidney function and the development of kidney disease. Podocyte actin cytoskeleton and their highly specialized cell-cell junctions (also called slit diaphragm complexes) play key roles in controlling glomerular filtration. Myosin 1e (myo1e) is an actin-based molecular motor that is expressed in renal glomeruli. Disruption of the Myo1e gene in mice and humans promotes podocyte injury and results in the loss of the integrity of the glomerular filtration barrier. Here, we have used biochemical and microscopic approaches to determine whether myo1e is associated with the slit diaphragm complexes in glomerular podocytes. Myo1e was consistently enriched in the slit diaphragm fraction during subcellular fractionation of renal glomeruli and colocalized with the slit diaphragm markers in mouse kidney. Live cell imaging studies showed that myo1e was recruited to the newly formed cell-cell junctions in cultured podocytes, where it colocalized with the actin filament cables aligned with the nascent contacts. Myo1e-null podocytes expressing FSGS-associated myo1e mutant (A159P) did not efficiently assemble actin cables along new cell-cell junctions. We have mapped domains in myo1e that were critical for its localization to cell-cell junctions and determined that the SH3 domain of myo1e tail interacts with ZO-1, a component of the slit diaphragm complex and tight junctions. These findings suggest that myo1e represents a component of the slit diaphragm complex and may contribute to regulating junctional integrity in kidney podocytes.

2005 ◽  
Vol 289 (2) ◽  
pp. F431-F441 ◽  
Author(s):  
Maribel Rico ◽  
Amitava Mukherjee ◽  
Martha Konieczkowski ◽  
Leslie A. Bruggeman ◽  
R. Tyler Miller ◽  
...  

Podocyte differentiation is required for normal glomerular filtration barrier function and is regulated by the transcription factor WT1. We identified WT1-interacting protein (WTIP) and hypothesized that it functions as both a scaffold for slit diaphragm proteins and a corepressor of WT1 transcriptional activity by shuttling from cell-cell junctions to the nucleus after injury. Endogenous WTIP colocalizes with zonula occludens-1 (ZO-1) in cultured mouse podocyte adherens junctions. To model podocyte injury in vitro, we incubated differentiated podocytes with puromycin aminonucleoside (PAN; 100 μg/ml) for 24 h, which disassembled cell-cell contacts, rearranged actin cytoskeleton, and caused process retraction. Podocyte synaptopodin expression diminished after PAN treatment, consistent with podocyte dedifferentiation in some human glomerular diseases. To assess podocyte function, we measured albumin flux across differentiated podocytes cultured on collagen-coated Transwell filters. Albumin transit across PAN-treated cells increased to levels observed with undifferentiated podocytes. Consistent with our hypothesis, WTIP, as well as ZO-1, translocated from podocyte adherens junctions to nuclei in PAN-treated cells. Because WTIP is a transcriptional corepressor for WT1, we examined the effect of PAN on expression of retinoblastoma binding protein Rbbp7 (also known as RbAp46), a WT1 target gene expressed in S-shaped bodies during nephrogenesis. Rbbp7 expression in PAN-treated podocytes was reduced compared with untreated cells. In conclusion, WTIP translocates from cell-cell junctions to the nucleus in PAN-treated podocytes. We suggest that WTIP monitors slit diaphragm protein assembly and shuttles into the nucleus after podocyte injury, translating changes in slit diaphragm structure into altered gene expression and a less differentiated phenotype.


2004 ◽  
Vol 24 (2) ◽  
pp. 550-560 ◽  
Author(s):  
Séverine Roselli ◽  
Laurence Heidet ◽  
Mireille Sich ◽  
Anna Henger ◽  
Matthias Kretzler ◽  
...  

ABSTRACT Podocytes are specialized epithelial cells covering the basement membrane of the glomerulus in the kidney. The molecular mechanisms underlying the role of podocytes in glomerular filtration are still largely unknown. We generated podocin-deficient (Nphs2 −/−) mice to investigate the function of podocin, a protein expressed at the insertion of the slit diaphragm in podocytes and defective in a subset of patients with steroid-resistant nephrotic syndrome and focal and segmental glomerulosclerosis. Nphs2 −/− mice developed proteinuria during the antenatal period and died a few days after birth from renal failure caused by massive mesangial sclerosis. Electron microscopy revealed the extensive fusion of podocyte foot processes and the lack of a slit diaphragm in the remaining foot process junctions. Using real-time PCR and immunolabeling, we showed that the expression of other slit diaphragm components was modified in Nphs2 −/− kidneys: the expression of the nephrin gene was downregulated, whereas that of the ZO1 and CD2AP genes appeared to be upregulated. Interestingly, the progression of the renal disease, as well as the presence or absence of renal vascular lesions, depends on the genetic background. Our data demonstrate the crucial role of podocin in the establishment of the glomerular filtration barrier and provide a suitable model for mapping and identifying modifier genes involved in glomerular diseases caused by podocyte injuries.


2005 ◽  
Vol 16 (5) ◽  
pp. 2168-2180 ◽  
Author(s):  
Marie Causeret ◽  
Nicolas Taulet ◽  
Franck Comunale ◽  
Cyril Favard ◽  
Cécile Gauthier-Rouvière

Cadherins are homophilic cell-cell adhesion molecules implicated in cell growth, differentiation, and organization into tissues during embryonic development. They accumulate at cell-cell contact sites and act as adhesion-activated signaling receptors. Here, we show that the dynamic assembly of N-cadherin at cell-cell contacts involves lipid rafts. In C2C12 myoblasts, immunofluorescence and biochemical experiments demonstrate that N-cadherin present at cell-cell contacts is colocalized with lipid rafts. Disruption of lipid rafts leads to the inhibition of cell-cell adhesion and disorganization of N-cadherin–dependent cell-cell contacts without modifying the association of N-cadherin with catenins and its availability at the plasma membrane. Fluorescent recovery after photobleaching experiments demonstrate that at the dorsal plasma membrane, lipid rafts are not directly involved in the diffusional mobility of N-cadherin. In contrast, at cell-cell junctions N-cadherin association with lipid rafts allows its stabilization enabling the formation of a functional adhesive complex. We show that lipid rafts, as homophilic interaction and F-actin association, stabilize cadherin-dependent adhesive complexes. Homophilic interactions and F-actin association of N-cadherin are both required for its association to lipid rafts. We thus identify lipid rafts as new regulators of cadherin-mediated cell adhesion.


2021 ◽  
Vol 22 (16) ◽  
pp. 8989
Author(s):  
Anna Hollósi ◽  
Katalin Pászty ◽  
Miklós Kellermayer ◽  
Guillaume Charras ◽  
Andrea Varga

Mechanical forces acting on cell–cell adhesion modulate the barrier function of endothelial cells. The actively remodeled actin cytoskeleton impinges on cell–cell adhesion to counteract external forces. We applied stress on endothelial monolayers by mechanical stretch to uncover the role of BRAF in the stress-induced response. Control cells responded to external forces by organizing and stabilizing actin cables in the stretched cell junctions. This was accompanied by an increase in intercellular gap formation, which was prevented in BRAF knockdown monolayers. In the absence of BRAF, there was excess stress fiber formation due to the enhanced reorganization of actin fibers. Our findings suggest that stretch-induced intercellular gap formation, leading to a decrease in barrier function of blood vessels, can be reverted by BRAF RNAi. This is important when the endothelium experiences changes in external stresses caused by high blood pressure, leading to edema, or by immune or cancer cells in inflammation or metastasis.


1998 ◽  
Vol 141 (3) ◽  
pp. 791-804 ◽  
Author(s):  
María Yáñez-Mó ◽  
Arántzazu Alfranca ◽  
Carlos Cabañas ◽  
Mónica Marazuela ◽  
Reyes Tejedor ◽  
...  

Cell-to-cell junction structures play a key role in cell growth rate control and cell polarization. In endothelial cells (EC), these structures are also involved in regulation of vascular permeability and leukocyte extravasation. To identify novel components in EC intercellular junctions, mAbs against these cells were produced and selected using a morphological screening by immunofluorescence microscopy. Two novel mAbs, LIA1/1 and VJ1/16, specifically recognized a 25-kD protein that was selectively localized at cell–cell junctions of EC, both in the primary formation of cell monolayers and when EC reorganized in the process of wound healing. This antigen corresponded to the recently cloned platelet-endothelial tetraspan antigen CD151/PETA-3 (platelet-endothelial tetraspan antigen-3), and was consistently detected at EC cell–cell contact sites. In addition to CD151/PETA-3, two other members of the tetraspan superfamily, CD9 and CD81/ TAPA-1 (target of antiproliferative antibody-1), localized at endothelial cell-to-cell junctions. Biochemical analysis demonstrated molecular associations among tetraspan molecules themselves and those of CD151/ PETA-3 and CD9 with α3β1 integrin. Interestingly, mAbs directed to both CD151/PETA-3 and CD81/ TAPA-1 as well as mAb specific for α3 integrin, were able to inhibit the migration of ECs in the process of wound healing. The engagement of CD151/PETA-3 and CD81/TAPA-1 inhibited the movement of individual ECs, as determined by quantitative time-lapse video microscopy studies. Furthermore, mAbs against the CD151/PETA-3 molecule diminished the rate of EC invasion into collagen gels. In addition, these mAbs were able to increase the adhesion of EC to extracellular matrix proteins. Together these results indicate that CD81/TAPA-1 and CD151/PETA-3 tetraspan molecules are components of the endothelial lateral junctions implicated in the regulation of cell motility, either directly or by modulation of the function of the associated integrin heterodimers.


2005 ◽  
Vol 288 (6) ◽  
pp. F1153-F1163 ◽  
Author(s):  
Melina Silberberg ◽  
Audra J. Charron ◽  
Robert Bacallao ◽  
Angela Wandinger-Ness

Polycystin-1, the product of the major gene mutated in autosomal dominant polycystic kidney disease (ADPKD), has been shown to associate with multiple epithelial cell junctions. Our hypothesis is that polycystin-1 is an important protein for the initial establishment of cell-cell junctions and maturation of the cell and that polycystin-1 localization is dependent on the degree of cell polarization. Using laser-scanning confocal microscopy and two models of cell polarization, polycystin-1 and desmosomes were found to colocalize during the initial establishment of cell-cell contact when junctions were forming. However, colocalization was lost in confluent monolayers. Parallel morphological and biochemical evaluations revealed a profound mispolarization of desmosomal components to both the apical and basolateral domains in primary ADPKD cells and tissue. Studies of the intermediate filament network associated with desmosomes showed that there is a decrease in cytokeratin levels and an abnormal expression of the mesenchymal protein vimentin in the disease. Moreover, we show for the first time that the structural alterations seen in adherens and desmosomal junctions have a functional impact, leaving the ADPKD cells with weakened cell-cell adhesion. In conclusion, in this paper we show that polycystin-1 transiently colocalizes with desmosomes and that desmosomal proteins are mislocalized as a consequence of polycystin-1 mutation.


2021 ◽  
Vol 36 (Supplement_1) ◽  
Author(s):  
Anna Iervolino ◽  
Tim Lange ◽  
Sabrina Siccardi ◽  
Florian Siegerist ◽  
Francesca Pia Caruso ◽  
...  

Abstract Background and Aims The zebrafish (Danio rerio) is a powerful animal model to study glomerular morphology and the function of the permselectivity of the glomerular filtration barrier. Since zebrafish larvae develop quickly and can be bred to become transparent, in vivo observation of these animals is possible. At 48 hours post fertilization, zebrafish larvae develop a single glomerulus which is attached to a pair of tubules. Like in mammals, the glomerular filtration barrier consists of a fenestrated endothelium, the glomerular basement membrane and interdigitating podocyte foot processes bridged by a slit diaphragm. By using genetically modified zebrafish strains with fluorescently labeled podocytes, it is possible to study alterations of the glomerulus during the development of renal disease like focal segmental glomerulosclerosis (FSGS) directly in vivo. FSGS is characterized by podocyte loss, the effacement of their foot processes as well as scarring of the glomerulus. To study FSGS in zebrafish larvae, we induced podocyte detachment by the use of a zebrafish strain expressing the enzyme nitroreductase converting metronidazole into a toxic substance specifically in podocytes. The aim of our study was to collect glomeruli for the identification of mRNAs as well as miRNAs by RNA_Seq that are up- and down-regulated in the glomeruli of this FSGS-like disease model. Method The transgenic zebrafish strain Cherry (Tg(nphs2:GAL4); Tg(UAS:Eco.nfsB-mCherry); mitfaw2/w2; mpv17a9/a9) which expresses the prokaryotic enzyme nitroreductase (NTR) fused to mCherry, a red fluorescent protein, under the control of the podocyte-specific podocin (nphs2) promoter in a transparent zebrafish strain, was utilized. After addition of metronidazole (MTZ) into the tank water, MTZ is converted into a cytotoxin by NTR leading to dose-dependent apoptosis exclusively in podocytes. Cherry larvae were treated at 4 days post fertilization (dpf) for 48 h with 80 µM MTZ. MTZ-treated and control larvae were homogenized at 6 dpf. The cell suspension was diluted, and red-fluorescent glomeruli were collected using a micropipette and a microscope. Total RNA was isolated, and integrity was checked by a Bioanalyzer. Libraries were generated with a MACE kit and True Quant small RNA seq kit by GenXPro. Constructs were amplified by PCR and sequenced on an Illumina Hiseq 2000. Normalization and statistical analysis for differential gene expression were done using DESeq2. Results Zebrafish larvae showed severe whole-body edema, proteinuria, loss of podocytes and an increased mortality rate after MTZ-treatment. The glomerular histology resembled mammalian FSGS. We found that only the RNA of manually collected glomeruli had an excellent quality. Using RNA_Seq, we identified a total of 16941 genes. DESeq2 analysis showed 494 up-regulated and 473 down-regulated genes. Gene ontology (GO) enrichment analysis of up-regulated genes revealed a total of 167 that are significantly enriched in GO terms (e.g. metabolic processes, immune response and ion transport). Down-regulated genes were enriched in 14 GO terms and most of them are linked to normal glomerular function and the slit diaphragm. DESeq2 analysis identified 200 miRNAs of 777 small RNAs. Some of these miRNA are already described to be regulated in different glomerular diseases like FSGS, lupus nephritis, IgA nephropathy and diabetic nephropathy. Conclusion We analyzed isolated glomeruli from transgenic zebrafish larvae that developed a FSGS-like disease. By sequencing, we have found mRNAs and miRNAs that were significantly regulated after the onset of disease. Detailed knowledge of these mRNAs and miRNA-based gene regulation will help to uncover the pathomechanism as well as to develop therapeutics for the treatment of FSGS.


2020 ◽  
Author(s):  
Joanna Kim ◽  
John A. Cooper

AbstractSeptins play an important role in regulating the barrier function of the endothelial monolayer of the microvasculature. Depletion of septin 2 protein alters the organization of vascular endothelial (VE)-cadherin at cell-cell adherens junctions as well as the dynamics of membrane protrusions at endothelial cell-cell contact sites. Here, we report the discovery that localization of septin 2 at endothelial cell junctions is important for the distribution of a number of other junctional molecules. We also found that treatment of microvascular endothelial cells with the inflammatory mediator TNF-α led to sequestration of septin 2 away from cell junctions and into the cytoplasm, without an effect on the overall level of septin 2 protein. Interestingly, TNF-α treatment of endothelial monolayers produced effects similar to those of depletion of septin 2 on various molecular components of adherens junctions (AJs) and tight junctions (TJs). Immunofluorescence staining revealed disruption of the integrity of AJs and TJs at cell-cell junctions without significant changes in protein expression except for VE-cadherin and nectin-2. To investigate the mechanism of junctional localization of septin 2, we mutated the polybasic motif of septin 2, which is proposed to interact with PIP2 in the plasma membrane. Overexpression of PIP2-binding mutant (PIP2BM) septin 2 led to loss of septin 2 from cell junctions with accumulation in the cytoplasm. This redistribution of septin 2 away from the membrane led to effects on cell junction molecules similar to those observed for depletion of septin 2. We conclude that septin localization to the membrane is essential for function and that septins support the localization of multiple cell junction molecules in endothelial cells.


2008 ◽  
Vol 182 (2) ◽  
pp. 395-410 ◽  
Author(s):  
Shinsuke Nakao ◽  
Anna Platek ◽  
Shinji Hirano ◽  
Masatoshi Takeichi

OL-protocadherin (OL-pc) is a transmembrane protein belonging to the cadherin superfamily, which has been shown to accumulate at cell–cell contacts via its homophilic interaction, but its molecular roles remain elusive. In this study, we show that OL-pc bound Nck-associated protein 1 (Nap1), a protein that regulates WAVE-mediated actin assembly. In astrocytoma U251 cells not expressing OL-pc, Nap1 was localized only along the lamellipodia. However, exogenous expression of OL-pc in these cells recruited Nap1 as well as WAVE1 to cell–cell contact sites. Although OL-pc expression had no effect on the motility of solitary U251 cells, it accelerated their movement when they were in contact with one another, causing concomitant reorganization of F-actin and N-cadherin at cell junctions. OL-pc mutants lacking the Nap1-binding site exhibited no such effect. N-cadherin knockdown mimicked OL-pc expression in enhancing cell movement. These results suggest that OL-pc remodels the motility and adhesion machinery at cell junctions by recruiting the Nap1–WAVE1 complex to these sites and, in turn, promotes the migration of cells.


1999 ◽  
Vol 144 (2) ◽  
pp. 361-371 ◽  
Author(s):  
Michael Buchert ◽  
Stefan Schneider ◽  
Virginia Meskenaite ◽  
Mark T. Adams ◽  
Eli Canaani ◽  
...  

The AF-6/afadin protein, which contains a single PDZ domain, forms a peripheral component of cell membranes at specialized sites of cell–cell junctions. To identify potential receptor-binding targets of AF-6 we screened the PDZ domain of AF-6 against a range of COOH-terminal peptides selected from receptors having potential PDZ domain-binding termini. The PDZ domain of AF-6 interacts with a subset of members of the Eph subfamily of RTKs via its COOH terminus both in vitro and in vivo. Cotransfection of a green fluorescent protein-tagged AF-6 fusion protein with full-length Eph receptors into heterologous cells induces a clustering of the Eph receptors and AF-6 at sites of cell–cell contact. Immunohistochemical analysis in the adult rat brain reveals coclustering of AF-6 with Eph receptors at postsynaptic membrane sites of excitatory synapses in the hippocampus. Furthermore, AF-6 is a substrate for a subgroup of Eph receptors and phosphorylation of AF-6 is dependent on a functional kinase domain of the receptor. The physical interaction of endogenous AF-6 with Eph receptors is demonstrated by coimmunoprecipitation from whole rat brain lysates. AF-6 is a candidate for mediating the clustering of Eph receptors at postsynaptic specializations in the adult rat brain.


Sign in / Sign up

Export Citation Format

Share Document