Galectin-3 expression is induced in renal β-intercalated cells during metabolic acidosis

2006 ◽  
Vol 290 (1) ◽  
pp. F148-F158 ◽  
Author(s):  
Andrew L. Schwaderer ◽  
Soundarapandian Vijayakumar ◽  
Qais Al-Awqati ◽  
George J. Schwartz

The adaptation of the cortical collecting duct (CCD) to metabolic acidosis requires the polymerization and deposition in the extracellular matrix of the novel protein hensin. HCO3−-secreting β-intercalated cells remove apical Cl−:HCO3− exchangers and may reverse functional polarity to secrete protons. Using intercalated cells in culture, we found that galectin-3 facilitated hensin polymerization, thereby causing their differentiation into the H+-secreting cell phenotype. We examined the expression of galectin-3 in the rabbit kidney and its relationship to hensin during metabolic acidosis. In control kidneys, galectin-3 was expressed in the cortical and medullary collecting ducts. In the outer cortex 26 ± 3% of CCD cells expressed galectin-3 compared with 64 ± 3% of the cells of the inner cortex. In the CCD, galectin-3 was rarely expressed in β-intercalated cells, being primarily present in α-intercalated and principal cells. During metabolic acidosis, the intensity of cellular staining for galectin-3 increased and more cells began to express it; the percentage of CCD cells expressing galectin-3 increased from 26 ± 3 to 66 ± 3% in the outer cortex and from 64 ± 3 to 78 ± 4% in the inner cortex. This was particularly evident in β-intercalated cells where expression was found in only 8 ± 2% in control animals but in 75 ± 2% during metabolic acidosis in the outer cortex and similarly for the inner cortex (26 ± 6 to 90 ± 7%). Importantly, both galectin-3 and hensin were found in the extracellular matrix of microdissected CCDs; and during metabolic acidosis, many more cells exhibited this extracellular colocalization. Thus galectin-3 may play several important roles in the CCD, including mediating the adaptation of β-intercalated cells during metabolic acidosis.

2013 ◽  
Vol 305 (1) ◽  
pp. F90-F99 ◽  
Author(s):  
Soundarapandian Vijayakumar ◽  
Hu Peng ◽  
George J. Schwartz

A multidomain, multifunctional 230-kDa extracellular matrix (ECM) protein, hensin, regulates the adaptation of rabbit kidney to metabolic acidosis by remodeling collecting duct intercalated cells. Conditional deletion of hensin in intercalated cells of the mouse kidney leads to distal renal tubular acidosis and to a significant reduction in the number of cells expressing the basolateral chloride-bicarbonate exchanger kAE1, a characteristic marker of α-intercalated cells. Although hensin is secreted as a monomer, its polymerization and ECM assembly are essential for its role in the adaptation of the kidney to metabolic acidosis. Galectin-3, a unique lectin with specific affinity for β-galactoside glycoconjugates, directly interacts with hensin. Acidotic rabbits had a significant increase in the number of cells expressing galectin-3 in the collecting duct and exhibited colocalization of galectin-3 with hensin in the ECM of microdissected tubules. In this study, we confirmed the increased expression of galectin-3 in acidotic rabbit kidneys by real-time RT-PCR. Galectin-3 interacted with hensin in vitro via its carbohydrate-binding COOH-terminal domain, and the interaction was competitively inhibited by lactose, removal of the COOH-terminal domain of galectin-3, and deglycosylation of hensin. Galectin-9, a lectin with two carbohydrate-recognition domains, is also present in the rabbit kidney; galectin-9 partially oligomerized hensin in vitro. Our results demonstrate that galectin-3 plays a critical role in hensin ECM assembly by oligomerizing secreted monomeric hensin. Both the NH2-terminal and COOH-terminal domains are required for this function. We suggest that in the case of galectin-3-null mice galectin-9 may partially substitute for the function of galectin-3.


2013 ◽  
Vol 304 (4) ◽  
pp. F422-F431 ◽  
Author(s):  
Jesse M. Bishop ◽  
Hyun-Wook Lee ◽  
Mary E. Handlogten ◽  
Ki-Hwan Han ◽  
Jill W. Verlander ◽  
...  

The ammonia transporter family member, Rh B Glycoprotein (Rhbg), is an ammonia-specific transporter heavily expressed in the kidney and is necessary for the normal increase in ammonia excretion in response to metabolic acidosis. Hypokalemia is a common clinical condition in which there is increased renal ammonia excretion despite the absence of metabolic acidosis. The purpose of this study was to examine Rhbg's role in this response through the use of mice with intercalated cell-specific Rhbg deletion (IC-Rhbg-KO). Hypokalemia induced by feeding a K+-free diet increased urinary ammonia excretion significantly. In mice with intact Rhbg expression, hypokalemia increased Rhbg protein expression in intercalated cells in the cortical collecting duct (CCD) and in the outer medullary collecting duct (OMCD). Deletion of Rhbg from intercalated cells inhibited hypokalemia-induced changes in urinary total ammonia excretion significantly and completely prevented hypokalemia-induced increases in urinary ammonia concentration, but did not alter urinary pH. We conclude that hypokalemia increases Rhbg expression in intercalated cells in the cortex and outer medulla and that intercalated cell Rhbg expression is necessary for the normal increase in renal ammonia excretion in response to hypokalemia.


1993 ◽  
Vol 265 (2) ◽  
pp. F327-F332 ◽  
Author(s):  
R. F. Reilly ◽  
C. A. Shugrue ◽  
D. Lattanzi ◽  
D. Biemesderfer

We recently isolated a cDNA encoding a Na+/Ca2+ exchanger from rabbit kidney that was highly similar to the canine cardiac sarcolemmal Na+/Ca2+ exchanger. In the present study, we used two different antibodies to the exchanger to identify the protein and establish its cellular and subcellular localization in the kidney. The first antibody was prepared against a fusion protein consisting of 190 amino acids of the large, presumably intracellular loop of the rabbit renal exchanger fused to the maltose-binding protein. The second was a monoclonal antibody generated against the isolated purified canine cardiac sarcolemmal exchanger. To identify the Na+/Ca2+ exchanger protein, we performed immunoblot analysis against a membrane vesicle preparation from rabbit kidney cortex. Both antibodies immunoblotted proteins of 120 and 70 kDa that are known to be associated with the exchanger. Indirect immunofluorescence revealed that both antisera labeled the basolateral surface of the majority of cells in the connecting tubule (CNT). Since the phase-dense (intercalated) cells in the CNT were not stained, this suggested that the labeled cells were CNT cells. No labeling was detected in other nephron segments with the exception of occasional faint staining of the majority cell population of the cortical collecting duct. The fact that we did not detect labeling in other nephron segments is consistent with either 1) the absence of expression of the Na+/Ca2+ exchanger in these segments, 2) the expression of the exchanger in levels below the threshold of detection of the two antibodies used in this study, or 3) the exchanger in these segments is represented by a different isoform.(ABSTRACT TRUNCATED AT 250 WORDS)


1991 ◽  
Vol 260 (4) ◽  
pp. F498-F505
Author(s):  
C. L. Emmons ◽  
K. Matsuzaki ◽  
J. B. Stokes ◽  
V. L. Schuster

The rabbit cortical collecting duct (CCD) consists of three major cell types: principal cells transport K+, beta-intercalated cells absorb Cl-, and alpha-intercalated cells secrete H+. We used functional and histological methods to assess axial distribution of these cell types along rabbit CCD. In perfused CCDs, lumen-to-bath Rb+ rate coefficient (an index of principal cell K+ transport) was not different in tubules from outer cortex (1 mm from renal surface) compared with those from inner cortex (2 mm from renal surface), suggesting that principal cell function is homogeneous along the CCD. In contrast, Cl- rate coefficient (a measure of beta-intercalated cell function) was twice as high in CCDs from outer compared with inner cortex, suggesting heterogeneity of beta-intercalated cells along the CCD. To further investigate these regional differences, we fixed and embedded kidneys and identified three cell types in CCD cross sections using carbonic anhydrase staining and peanut lectin binding. Comparing tubule cross sections from outer with those from inner cortex, we found no axial difference in the fraction of cells that were either principal cells (64%) or total (lectin binding and nonlectin binding) intercalated cells (36%). However, the lectin-binding intercalated cell subset was significantly increased in outer compared with inner cortex. We conclude that there is not heterogeneity of principal cells along the rabbit CCD; however, beta-cell number and function are increased in outer CCD. Collecting duct heterogeneity begins within the cortical segment.


2002 ◽  
Vol 283 (4) ◽  
pp. C1206-C1218 ◽  
Author(s):  
Shigeru B. H. Ko ◽  
Xiang Luo ◽  
Henrik Hager ◽  
Alexandra Rojek ◽  
Joo Young Choi ◽  
...  

The renal cortical collecting duct (CCD) plays an important role in systemic acid-base homeostasis. The β-intercalated cells secrete most of the HCO[Formula: see text], which is mediated by a luminal, DIDS-insensitive, Cl−/HCO[Formula: see text] exchange. The identity of the luminal exchanger is a matter of debate. Anion exchanger isoform 4 (AE4) cloned from the rabbit kidney was proposed to perform this function (Tsuganezawa H et al. J Biol Chem 276: 8180–8189, 2001). By contrast, it was proposed (Royaux IE et al. Proc Natl Acad Sci USA 98: 4221–4226, 2001) that pendrin accomplishes this function in the mouse CCD. In the present work, we cloned, localized, and characterized the function of the rat AE4. Northern blot and RT-PCR showed high levels of AE4 mRNA in the CCD. Expression in HEK-293 and LLC-PK1 cells showed that AE4 is targeted to the plasma membrane. Measurement of intracellular pH (pHi) revealed that AE4 indeed functions as a Cl−/HCO[Formula: see text] exchanger. However, AE4 activity was inhibited by DIDS. Immunolocalization revealed species-specific expression of AE4. In the rat and mouse CCD and the mouse SMG duct AE4 was in the basolateral membrane. By contrast, in the rabbit, AE4 was in the luminal and lateral membranes. In both, the rat and rabbit CCD AE4 was in α-intercalated cells. Importantly, localization of AE4 was not affected by the systemic acid-base status of the rats. Therefore, we conclude that expression and possibly function of AE4 is species specific. In the rat and mouse AE4 functions as a Cl−/HCO[Formula: see text] exchanger in the basolateral membrane of α-intercalated cells and may participate in HCO[Formula: see text] absorption. In the rabbit AE4 may contribute to HCO[Formula: see text] secretion.


1992 ◽  
Vol 262 (2) ◽  
pp. F199-F208 ◽  
Author(s):  
L. M. Satlin ◽  
T. Matsumoto ◽  
G. J. Schwartz

Measurements of transepithelial HCO3 transport in the rabbit cortical collecting duct (CCD) indicate that net HCO3 secretion becomes apparent only after the first month of life [F. M. Mehrgut, L. M. Satlin, and G. J. Schwartz, Am. J. Physiol. 259 (Renal Fluid Electrolyte Physiol. 28): F801-F808, 1990]. We used fluorescent probes and immunocytochemistry to trace the postnatal functional development of the beta-intercalated cell, the HCO3-secreting cell of the fully differentiated CCD. Throughout maturation, the beta-intercalated cell was empirically identified by its selective uptake of the pH-sensitive dye 2',7'-bis(carboxyethyl)-5(6)-carboxyfluorescein, an alkaline cell pH, apical binding to peanut agglutinin (PNA) and monoclonal antibody B63, and by its functional capacity for apical Cl-HCO3 exchange as manifested by Cl-dependent extrusion of an intracellular alkali load. Compared with the mature segment, the neonatal mid-CCD exhibited fewer intercalated cells, which were characterized by a less alkaline cell pH, reduced apical Cl-HCO3 exchange activity, and shorter apical binding profiles for PNA. There was evidence for basolateral Cl conductance and similar buffering capacity at all ages. In the neonatal outer cortex there was little or no binding to PNA or to B63. As soon as cell surface antigens characteristic of the fully differentiated beta-cell were detected, functional studies indicated the presence, albeit reduced, of apical Cl-HCO3 exchange. Thus there is postnatal proliferation and maturation of HCO3-secreting intercalated cells in the rabbit kidney; the origin of these cells remains to be determined.


1992 ◽  
Vol 262 (6) ◽  
pp. F1015-F1022
Author(s):  
K. M. Madsen ◽  
J. Kim ◽  
C. C. Tisher

Intercalated cells (ICs) in the collecting duct and the connecting tubule (CNT) are involved in H+ secretion and HCO3- reabsorption. H+ secretion is mediated by an H(+)-adenosinetriphosphatase in the apical plasma membrane, whereas a band 3-like Cl(-)-HCO3- exchanger in the basolateral membrane is responsible for HCO3- reabsorption. Recent studies have reported that a band 3-like protein is also present in mitochondria in rabbit ICs. The purpose of this study was to establish the subcellular location of the band 3-like Cl(-)-HCO3- exchanger in rabbit ICs by electron microscopic immunocytochemistry using a monoclonal antibody, IVF12, against erythrocyte band 3 protein. Rabbit kidneys were preserved by in vivo perfusion with a paraformaldehyde-lysine-periodate solution and processed for immunocytochemistry using a horseradish peroxidase preembedding technique. Band 3 immunostaining was observed on the basolateral plasma membrane of ICs in the outer medullary collecting duct and type A cells in the cortical collecting duct (CCD) and CNT. In addition, distinct staining for band 3 was present in numerous small vesicles and in multivesicular bodies in type A ICs in the CCD and CNT. However, there was no evidence of band 3 immunostaining of mitochondria or of the apical plasma membrane in any cells of the collecting duct. These observations suggest that basolateral Cl(-)-HCO3- exchangers in type A ICs in the rabbit kidney are stored in intracellular vesicles and possibly degraded in the vascular-lysosomal system when these cells are in a resting state. The previously reported band 3 immunolabeling of mitochondria could not be confirmed.


1994 ◽  
Vol 4 (8) ◽  
pp. 1546-1557 ◽  
Author(s):  
J W Verlander ◽  
K M Madsen ◽  
D K Stone ◽  
C C Tisher

In contrast to results obtained in the rat kidney, studies of H+ATPase localization in the rabbit kidney have failed to demonstrate basolateral plasma membrane H+ATPase immunoreactivity in intercalated cells in the cortical collecting duct (CCD). Previous studies have relied on light microscopic immunofluorescence techniques, which have limited resolution. Therefore, the immunogold procedure was used to localize H+ATPase in rabbit collecting ducts at the ultrastructural level. Rabbit kidneys were preserved in vivo with periodate-lysine-paraformaldehyde or glutaraldehyde solutions, and samples of cortex were embedded in Lowicryl K4M. Thin sections were labeled for H+ATPase by the immunogold procedure with a rabbit polyclonal antibody against the 70-kd subunit of bovine brain H+ATPase. Three patterns of localization of H+ATPase were observed. The majority of intercalated cells in the CCD exhibited label over cytoplasmic vesicles only. In these cells, no label was associated with either the apical or basolateral plasma membranes. In a second group of cells, label for H+ATPase was observed along the basolateral plasma membrane and over cytoplasmic vesicles throughout the cell. Rarely, intercalated cells with H+ATPase label along the apical plasma membrane and over the apical cytoplasmic vesicles were observed in the CCD. In the initial collecting tubule and connecting segment, intercalated cells with either pronounced apical or basolateral plasma membrane label prevailed, whereas few cells exhibited label restricted to the cytoplasmic vesicles. In summary, in the rabbit CCD, three patterns of H+ATPase distribution exist in intercalated cells, two of which conform to published models of type A and type B intercalated cells.


1996 ◽  
Vol 270 (3) ◽  
pp. F539-F547 ◽  
Author(s):  
R. B. Silver ◽  
P. A. Mennitt ◽  
L. M. Satlin

This study evaluated the role of H-K-adenosinetriphosphatase (H-K-ATPase) with chronic metabolic acidosis (CMA) in intercalated cells (ICs) of rabbit cortical collecting duct (CCD). CMA was induced by replacing drinking water with 75 mM NH4Cl in 5% sucrose for 10-14 days. CCDs isolated from CMA and control rabbits were split open and exposed to the intracellular pH (pHi) indicator 2',7'-bis(carboxyethyl)-5(6)-carboxyfluorescein. In N-2-hydroxyethylpiperazine-N'-2-ethanesulfonic acid-buffered solutions, the resting pHi in ICs was similar for both groups. K-dependent pHi recovery (5 mM K, 140 mM N-methyl-D-glucamine) was monitored in response to a pulse of NH4Cl (10 mM). The K-dependent pHi recovery rate was threefold higher in CMAICs compared with controls and was abolished with the gastric H-K-ATPase inhibitor, Sch-28080 (10(-5) M). Polarity of the H-K-ATPase was studied in microperfused CMA and control CCDs. Luminal K-dependent pHi recovery was monitored in response to an acute pulse of NH4Cl in individual peanut lectin agglutinin (PNA)-binding ICs. The apical Sch-28080-inhibitable K-dependent pHi recovery rate was significantly greater in CMA ICs than control ICs. In summary, CMA enhances functional activity of an apical H-K-ATPase in PNA-binding ICs of rabbit CCD.


Sign in / Sign up

Export Citation Format

Share Document