Postnatal maturation of rabbit renal collecting duct. III. Peanut lectin-binding intercalated cells

1992 ◽  
Vol 262 (2) ◽  
pp. F199-F208 ◽  
Author(s):  
L. M. Satlin ◽  
T. Matsumoto ◽  
G. J. Schwartz

Measurements of transepithelial HCO3 transport in the rabbit cortical collecting duct (CCD) indicate that net HCO3 secretion becomes apparent only after the first month of life [F. M. Mehrgut, L. M. Satlin, and G. J. Schwartz, Am. J. Physiol. 259 (Renal Fluid Electrolyte Physiol. 28): F801-F808, 1990]. We used fluorescent probes and immunocytochemistry to trace the postnatal functional development of the beta-intercalated cell, the HCO3-secreting cell of the fully differentiated CCD. Throughout maturation, the beta-intercalated cell was empirically identified by its selective uptake of the pH-sensitive dye 2',7'-bis(carboxyethyl)-5(6)-carboxyfluorescein, an alkaline cell pH, apical binding to peanut agglutinin (PNA) and monoclonal antibody B63, and by its functional capacity for apical Cl-HCO3 exchange as manifested by Cl-dependent extrusion of an intracellular alkali load. Compared with the mature segment, the neonatal mid-CCD exhibited fewer intercalated cells, which were characterized by a less alkaline cell pH, reduced apical Cl-HCO3 exchange activity, and shorter apical binding profiles for PNA. There was evidence for basolateral Cl conductance and similar buffering capacity at all ages. In the neonatal outer cortex there was little or no binding to PNA or to B63. As soon as cell surface antigens characteristic of the fully differentiated beta-cell were detected, functional studies indicated the presence, albeit reduced, of apical Cl-HCO3 exchange. Thus there is postnatal proliferation and maturation of HCO3-secreting intercalated cells in the rabbit kidney; the origin of these cells remains to be determined.

1987 ◽  
Vol 253 (4) ◽  
pp. F622-F635 ◽  
Author(s):  
L. M. Satlin ◽  
G. J. Schwartz

Intercalated cells play a major role in renal regulation of acid-base balance. We used fluorescent dyes to characterize postnatal maturation of intercalated cells. We stained rabbit collecting ducts with the pH-sensitive dye 6-carboxyfluorescein diacetate and identified individual intercalated cells by their bright green fluorescence. Number of fluorescent cells per millimeter tubule doubled during maturation in midcortex (68 +/- 7 to 121 +/- 9; P less than 0.01) but did not change in outer stripe of outer medulla. Excitation-ratio (490/450 nm) fluorometry of individual cells in nonperfused tubules revealed an increase in pH of cortical intercalated cell from 7.28 +/- 0.03 in newborn to 7.43 +/- 0.03 in adult (P less than 0.005); principal cell pH did not change with age, averaging 7.10 +/- 0.05. The smaller difference in pH between intercalated and principal cells in neonates suggested a paucity of H+ pumps in immature intercalated cells. Indeed, few cortical intercalated cells trapped the weak base acridine orange in cytoplasmic vesicles that contained H+ pumps or demonstrated selective uptake of 3,3'+-dipentyloxacarbocyanine, a fluorescent cation that probes for mitochondrial potential. Intercalated cells in neonatal medullary collecting ducts had a cell pH similar to that measured in the adult, as well as numerous acidic cytoplasmic vesicles and significant mitochondrial potentials. In conclusion, intercalated cells in cortical collecting duct underwent postnatal proliferation and maturation, whereas those cells present in outer medullary collecting duct, where proliferation was virtually complete by 1 wk of age, were nearly differentiated. Signals directing this centrifugal pattern of postnatal renal maturation are presently unknown.


1985 ◽  
Vol 248 (3) ◽  
pp. C348-C356 ◽  
Author(s):  
D. Brown ◽  
J. Roth ◽  
L. Orci

The lectin-gold technique was used to detect Helix pomatia and Dolichos biflorus lectin binding sites directly on semithin and thin sections of rat kidney collecting ducts. Intercalated cell apical plasma membranes and the membranes of apical cytoplasmic vesicles were heavily labeled in the cortex and outer stripe of the outer medulla but were negative or very weakly labeled in the inner stripe and inner medulla. In contrast, clear cell apical membranes were labeled along the entire length of the collecting duct. Double labeling of semithin cryostat sections with a specific antibody and lectin-gold complexes was used to demonstrate that the intercalated cells in all regions studied contained carbonic anhydrase, even though the lectin binding differed. These results indicate that, in terms of their glycocalyx composition, intercalated cells represent a heterogeneous population in different regions of the collecting duct.


2006 ◽  
Vol 290 (1) ◽  
pp. F148-F158 ◽  
Author(s):  
Andrew L. Schwaderer ◽  
Soundarapandian Vijayakumar ◽  
Qais Al-Awqati ◽  
George J. Schwartz

The adaptation of the cortical collecting duct (CCD) to metabolic acidosis requires the polymerization and deposition in the extracellular matrix of the novel protein hensin. HCO3−-secreting β-intercalated cells remove apical Cl−:HCO3− exchangers and may reverse functional polarity to secrete protons. Using intercalated cells in culture, we found that galectin-3 facilitated hensin polymerization, thereby causing their differentiation into the H+-secreting cell phenotype. We examined the expression of galectin-3 in the rabbit kidney and its relationship to hensin during metabolic acidosis. In control kidneys, galectin-3 was expressed in the cortical and medullary collecting ducts. In the outer cortex 26 ± 3% of CCD cells expressed galectin-3 compared with 64 ± 3% of the cells of the inner cortex. In the CCD, galectin-3 was rarely expressed in β-intercalated cells, being primarily present in α-intercalated and principal cells. During metabolic acidosis, the intensity of cellular staining for galectin-3 increased and more cells began to express it; the percentage of CCD cells expressing galectin-3 increased from 26 ± 3 to 66 ± 3% in the outer cortex and from 64 ± 3 to 78 ± 4% in the inner cortex. This was particularly evident in β-intercalated cells where expression was found in only 8 ± 2% in control animals but in 75 ± 2% during metabolic acidosis in the outer cortex and similarly for the inner cortex (26 ± 6 to 90 ± 7%). Importantly, both galectin-3 and hensin were found in the extracellular matrix of microdissected CCDs; and during metabolic acidosis, many more cells exhibited this extracellular colocalization. Thus galectin-3 may play several important roles in the CCD, including mediating the adaptation of β-intercalated cells during metabolic acidosis.


2013 ◽  
Vol 304 (4) ◽  
pp. F422-F431 ◽  
Author(s):  
Jesse M. Bishop ◽  
Hyun-Wook Lee ◽  
Mary E. Handlogten ◽  
Ki-Hwan Han ◽  
Jill W. Verlander ◽  
...  

The ammonia transporter family member, Rh B Glycoprotein (Rhbg), is an ammonia-specific transporter heavily expressed in the kidney and is necessary for the normal increase in ammonia excretion in response to metabolic acidosis. Hypokalemia is a common clinical condition in which there is increased renal ammonia excretion despite the absence of metabolic acidosis. The purpose of this study was to examine Rhbg's role in this response through the use of mice with intercalated cell-specific Rhbg deletion (IC-Rhbg-KO). Hypokalemia induced by feeding a K+-free diet increased urinary ammonia excretion significantly. In mice with intact Rhbg expression, hypokalemia increased Rhbg protein expression in intercalated cells in the cortical collecting duct (CCD) and in the outer medullary collecting duct (OMCD). Deletion of Rhbg from intercalated cells inhibited hypokalemia-induced changes in urinary total ammonia excretion significantly and completely prevented hypokalemia-induced increases in urinary ammonia concentration, but did not alter urinary pH. We conclude that hypokalemia increases Rhbg expression in intercalated cells in the cortex and outer medulla and that intercalated cell Rhbg expression is necessary for the normal increase in renal ammonia excretion in response to hypokalemia.


1993 ◽  
Vol 265 (2) ◽  
pp. F327-F332 ◽  
Author(s):  
R. F. Reilly ◽  
C. A. Shugrue ◽  
D. Lattanzi ◽  
D. Biemesderfer

We recently isolated a cDNA encoding a Na+/Ca2+ exchanger from rabbit kidney that was highly similar to the canine cardiac sarcolemmal Na+/Ca2+ exchanger. In the present study, we used two different antibodies to the exchanger to identify the protein and establish its cellular and subcellular localization in the kidney. The first antibody was prepared against a fusion protein consisting of 190 amino acids of the large, presumably intracellular loop of the rabbit renal exchanger fused to the maltose-binding protein. The second was a monoclonal antibody generated against the isolated purified canine cardiac sarcolemmal exchanger. To identify the Na+/Ca2+ exchanger protein, we performed immunoblot analysis against a membrane vesicle preparation from rabbit kidney cortex. Both antibodies immunoblotted proteins of 120 and 70 kDa that are known to be associated with the exchanger. Indirect immunofluorescence revealed that both antisera labeled the basolateral surface of the majority of cells in the connecting tubule (CNT). Since the phase-dense (intercalated) cells in the CNT were not stained, this suggested that the labeled cells were CNT cells. No labeling was detected in other nephron segments with the exception of occasional faint staining of the majority cell population of the cortical collecting duct. The fact that we did not detect labeling in other nephron segments is consistent with either 1) the absence of expression of the Na+/Ca2+ exchanger in these segments, 2) the expression of the exchanger in levels below the threshold of detection of the two antibodies used in this study, or 3) the exchanger in these segments is represented by a different isoform.(ABSTRACT TRUNCATED AT 250 WORDS)


1991 ◽  
Vol 260 (4) ◽  
pp. F498-F505
Author(s):  
C. L. Emmons ◽  
K. Matsuzaki ◽  
J. B. Stokes ◽  
V. L. Schuster

The rabbit cortical collecting duct (CCD) consists of three major cell types: principal cells transport K+, beta-intercalated cells absorb Cl-, and alpha-intercalated cells secrete H+. We used functional and histological methods to assess axial distribution of these cell types along rabbit CCD. In perfused CCDs, lumen-to-bath Rb+ rate coefficient (an index of principal cell K+ transport) was not different in tubules from outer cortex (1 mm from renal surface) compared with those from inner cortex (2 mm from renal surface), suggesting that principal cell function is homogeneous along the CCD. In contrast, Cl- rate coefficient (a measure of beta-intercalated cell function) was twice as high in CCDs from outer compared with inner cortex, suggesting heterogeneity of beta-intercalated cells along the CCD. To further investigate these regional differences, we fixed and embedded kidneys and identified three cell types in CCD cross sections using carbonic anhydrase staining and peanut lectin binding. Comparing tubule cross sections from outer with those from inner cortex, we found no axial difference in the fraction of cells that were either principal cells (64%) or total (lectin binding and nonlectin binding) intercalated cells (36%). However, the lectin-binding intercalated cell subset was significantly increased in outer compared with inner cortex. We conclude that there is not heterogeneity of principal cells along the rabbit CCD; however, beta-cell number and function are increased in outer CCD. Collecting duct heterogeneity begins within the cortical segment.


2013 ◽  
Vol 305 (1) ◽  
pp. F90-F99 ◽  
Author(s):  
Soundarapandian Vijayakumar ◽  
Hu Peng ◽  
George J. Schwartz

A multidomain, multifunctional 230-kDa extracellular matrix (ECM) protein, hensin, regulates the adaptation of rabbit kidney to metabolic acidosis by remodeling collecting duct intercalated cells. Conditional deletion of hensin in intercalated cells of the mouse kidney leads to distal renal tubular acidosis and to a significant reduction in the number of cells expressing the basolateral chloride-bicarbonate exchanger kAE1, a characteristic marker of α-intercalated cells. Although hensin is secreted as a monomer, its polymerization and ECM assembly are essential for its role in the adaptation of the kidney to metabolic acidosis. Galectin-3, a unique lectin with specific affinity for β-galactoside glycoconjugates, directly interacts with hensin. Acidotic rabbits had a significant increase in the number of cells expressing galectin-3 in the collecting duct and exhibited colocalization of galectin-3 with hensin in the ECM of microdissected tubules. In this study, we confirmed the increased expression of galectin-3 in acidotic rabbit kidneys by real-time RT-PCR. Galectin-3 interacted with hensin in vitro via its carbohydrate-binding COOH-terminal domain, and the interaction was competitively inhibited by lactose, removal of the COOH-terminal domain of galectin-3, and deglycosylation of hensin. Galectin-9, a lectin with two carbohydrate-recognition domains, is also present in the rabbit kidney; galectin-9 partially oligomerized hensin in vitro. Our results demonstrate that galectin-3 plays a critical role in hensin ECM assembly by oligomerizing secreted monomeric hensin. Both the NH2-terminal and COOH-terminal domains are required for this function. We suggest that in the case of galectin-3-null mice galectin-9 may partially substitute for the function of galectin-3.


1999 ◽  
Vol 10 (1) ◽  
pp. 1-12 ◽  
Author(s):  
JIN KIM ◽  
YOUNG-HEE KIM ◽  
JUNG-HO CHA ◽  
C. CRAIG TISHER ◽  
KIRSTEN M. MADSEN

Abstract. At least two populations of intercalated cells, type A and type B, exist in the connecting tubule (CNT), initial collecting tubule (ICT), and cortical collecting duct (CCD). Type A intercalated cells secrete protons via an apical H+ - ATPase and reabsorb bicarbonate by a band 3-like Cl-/HCO3- exchanger, AE1, located in the basolateral plasma membrane. Type B intercalated cells secrete bicarbonate by an apical Cl-/HCO3- exchanger that is distinct from AE1 and remains to be identified. They express H+ -ATPase in the basolateral plasma membrane and in vesicles throughout the cytoplasm. A third type of intercalated cell with apical H+ -ATPase, but no AE1, has been described in the CNT and CCD of both rat and mouse. The prevalence of the third cell type is not known. The aim of this study was to characterize and quantify intercalated cell subtypes, including the newly described third non A-non B cell, in the CNT, ICT, and CCD of the rat and mouse. A triple immunolabeling procedure was developed in which antibodies to H+ -ATPase and band 3 protein were used to identify subpopulations of intercalated cells, and segment-specific antibodies were used to identify distal tubule and collecting duct segments. In both rat and mouse, intercalated cells constituted approximately 40% of the cells in the CNT, ICT, and CCD. Type A, type B, and non A-non B intercalated cells were observed in all of the three segments, with type A cells being the most prevalent in both species. In the mouse, however, non A-non B cells constituted more than half of the intercalated cells in the CNT, 39% in the ICT, and 22% in the CCD, compared with 14, 7, and 5%, respectively, in the rat. In contrast, type B intercalated cells accounted for only 8 to 16% of the intercalated cells in the three segments in the mouse compared with 26 to 39% in the rat. It is concluded that striking differences exist in the prevalence and distribution of the different types of intercalated cells in the CNT, ICT, and CCD of rat and mouse. In the rat, the non A-non B cells are fairly rare, whereas in the mouse, they constitute a major fraction of the intercalated cells, primarily at the expense of the type B intercalated cells.


1985 ◽  
Vol 248 (3) ◽  
pp. C241-C246 ◽  
Author(s):  
A. Prigent ◽  
M. Bichara ◽  
M. Paillard

To examine the cellular mechanisms of H+ transfer in rabbit papillary collecting duct (PCD), the 5,5-[14C]dimethyloxazolidine-2,4-dione-derived cell pH (pHi), the [3H]triphenylmethylphosphonium-derived membrane potential (Em), the lumen-to-cell Na+ concentration gradient [( Na+]o/[Na+]i), and cell potassium and chloride concentrations were studied at 37 degrees C in separated PCD from rabbits pretreated with deoxycorticosterone acetate. The variations in cell pH values were used as an index of changes in H+ secretion. Under standard conditions pHi was 7.30 +/- 0.04, [Na+]o/[Na+]i was 2.46 +/- 0.43, Em was 78 +/- 7 mV (cell negative), [K+]i was 105 +/- 10 mM, and [Cl-]i was 33 +/- 6 mM; the value of pHi thus remained higher than expected if H+ ions were passively distributed (6.13). Acetazolamide, 10(-4) M, alkalinized the cells. When [Na+]o/[Na+]i was reduced (low-Na+ medium or 10(-3) M ouabain), the cells did not acidify, suggesting that net H+ secretion did not decrease; also, pHi was not linked to the variations in the transmembrane chloride concentration gradients. When the cells were depolarized (low-Na+ medium), they became more alkaline; when the cells were hyperpolarized (10(-4) M amiloride), they became more acid; minor change in Em (ouabain) was associated with no change in pHi. It is concluded that: 1) H+ is actively secreted into the lumen; 2) active H+ secretion may not be secondary, via electroneutral Na+:H+ countertransport or HCl cotransport, but probably occurs via a primary H+ pump; 3) variations in Em probably affect pHi by acting on both the active H+ transport system and passive movements of HCO-3 (or its equivalent).


Sign in / Sign up

Export Citation Format

Share Document