Hydrogen peroxide and epidermal growth factor activate phosphatidylinositol 3-kinase and increase sodium transport in A6 cell monolayers

2005 ◽  
Vol 288 (6) ◽  
pp. F1201-F1212 ◽  
Author(s):  
Nicolas Markadieu ◽  
Raphaël Crutzen ◽  
Daniel Blero ◽  
Christophe Erneux ◽  
Renaud Beauwens

Activation of phosphatidylinositol 3-kinase (PI 3-kinase) is required for insulin stimulation of sodium transport in A6 cell monolayers. In this study, we investigate whether stimulation of the PI 3-kinase by other agents also provoked an increase in sodium transport. Both epidermal growth factor (EGF) and H2O2 provoked a rise in sodium transport that was inhibited by LY-294002, an inhibitor of PI 3-kinase activity. PI 3-kinase activity was estimated in extracts from A6 cell monolayers directly by performance of a PI 3-kinase assay. We also estimated the relative importance of the PI 3-kinase pathway by two different methods: 1) coprecipitation of the p85 regulatory subunit with anti-phosphotyrosine antibodies and 2) phosphorylation of PKB on both Ser 473 and Thr 308 residues observed by Western blotting. Since the mitogen-activated protein kinase (MAPK) pathway has also been implicated in the regulation of sodium transport, we also investigated whether this pathway is turned on by insulin, H2O2, or EGF. Phosphorylation of ERK1/2 was increased only transiently by insulin and H2O2 but quite sustainedly by EGF. Inhibitors of this pathway (U-0126 and PD-98059) failed to affect the insulin and H2O2 stimulation of sodium transport but increased substantially the stimulation induced by EGF. The latter effect was associated with an increase in PKB phosphorylation, thus suggesting that the stimulation of the MAPK pathway prevents, in part, the stimulation of the PI 3-kinase pathway in the transport of sodium stimulated by EGF.

1996 ◽  
Vol 16 (11) ◽  
pp. 6427-6435 ◽  
Author(s):  
C Huang ◽  
W Y Ma ◽  
Z Dong

Phosphatidylinositol 3-kinase (PI 3-kinase) plays a role in a variety of biological processes, including regulation of gene expression, cell growth, and differentiation. However, little is known about its role in the cytoplasmic events involved in epidermal growth factor (EGF)-induced transduction of signals to the transcriptional machinery of the nucleus and in EGF-induced cell transformation. In this study, we examined whether PI 3-kinase is a mediator for the activation of AP-1 and neoplastic transformation by EGF in the murine epidermal cell line JB6. The results showed the following. (i) EGF not only induced a high level of PI 3-kinase activity by itself but also enhanced insulin-induced PI 3-kinase activity in JB6 P+ cells, the EGF-induced PI-3 kinase activity could be blocked by constitutive overexpression of a dominant negative P85 subunit of PI 3-kinase (deltaP85), and insulin could markedly promote EGF-induced AP-1 activity in a dose-dependent manner in JB6 P+ cells as well as promote EGF-induced JB6 P+ cell transformation. (ii) Inhibition of PI-3 kinase with wortmannin or LY294002 markedly decreased the AP-1 activity induced by insulin, EGF, or EGF and insulin in a dose-dependent manner, while wortmannin did not block UVB-induced AP-1 activity. (iii) AP-1 activation by insulin, EGF, or EGF and insulin could be completely inhibited by overexpression of deltaP85 in all the dose and time courses studied. (iv) Inhibitors of PI 3-kinase (wortmannin and LY294002) and stable overexpression of deltaP85 inhibited EGF-induced transformation but had no significant inhibitory effect on cell proliferation induced by EGF or EGF and insulin. These results demonstrate for the first time that PI 3-kinase appears to be required for EGF- or insulin-induced AP-1 transactivation and cell transformation but not cell proliferation in JB6 cells.


Sign in / Sign up

Export Citation Format

Share Document