CaR activation increases TNF production by mTAL cells via a Gi-dependent mechanism

2008 ◽  
Vol 294 (2) ◽  
pp. F345-F354 ◽  
Author(s):  
Huda Ismail Abdullah ◽  
Paulina L. Pedraza ◽  
John C. McGiff ◽  
Nicholas R. Ferreri

We evaluated the contribution of calcium-sensing receptor (CaR)-mediated Gi-coupled signaling to TNF production in medullary thick ascending limb (mTAL) cells. A selective Gi inhibitor, pertussis toxin (PTX), but not the inactive B-oligomer binding subunit, abolished CaR-mediated increases in TNF production. The inhibitory effect of PTX was partially reversed by using an adenylate cyclase inhibitor. CaR-mediated TNF production also was partially reversed by a cAMP analog, 8-Br-cAMP. IP1 accumulation was CaR dependent and blocked by PI-PLC; partial inhibition also was observed with PTX. CaR increased calcineurin (CaN) activity by approximately threefold, and PTX prevented CaR-mediated increases in CaN activity, an nuclear factor of activated T cells (NFAT)- cis reporter construct, and a TNF promoter construct. The interaction between Gi and PKC was determined, as we previously showed that CaR-mediated TNF production was CaN and NFAT- mediated and Gq dependent. CaR activation increased PKC activity by twofold, an effect abolished by transient transfection with a dominant negative CaR construct, R796W, or pretreatment with PTX. Inhibition with the pan-specific PKC inhibitor GF 109203X (20 nM) abolished CaR-mediated increases in activity of CaN, an NFAT reporter, and a TNF promoter construct. Collectively, the data suggest that Gi-coupled signaling contributes to NFAT-mediated TNF production in a CaN- and PKC-dependent manner and may be part of a CaR mechanism to regulate mTAL function. Moreover, concurrent Gq and Gi signaling is required for CaR-mediated TNF production in mTAL cells via a CaN/NFAT pathway that is PKC dependent. Understanding CaR-mediated signaling pathways that regulate TNF production in the mTAL is crucial to defining novel mechanisms that regulate extracellular fluid volume and salt balance.

2006 ◽  
Vol 290 (5) ◽  
pp. F1110-F1117 ◽  
Author(s):  
Huda Ismail Abdullah ◽  
Paulina L. Pedraza ◽  
Shoujin Hao ◽  
Karin D. Rodland ◽  
John C. McGiff ◽  
...  

Because nuclear factor of activated T cells (NFAT) has been implicated in TNF production as well as osmoregulation and salt and water homeostasis, we addressed whether calcium-sensing receptor (CaR)-mediated TNF production in medullary thick ascending limb (mTAL) cells was NFAT dependent. TNF production in response to addition of extracellular Ca2+ (1.2 mM) was abolished in mTAL cells transiently transfected with a dominant-negative CaR construct (R796W) or pretreated with the phosphatidylinositol phospholipase C (PI-PLC) inhibitor U-73122. Cyclosporine A (CsA), an inhibitor of the serine/threonine phosphatase calcineurin, and a peptide ligand, VIVIT, that selectively inhibits calcineurin-NFAT signaling, also prevented CaR-mediated TNF production. Increases in calcineurin activity in cells challenged with Ca2+ were inhibited after pretreatment with U-73122 and CsA, suggesting that CaR activation increases calcineurin activity in a PI-PLC-dependent manner. Moreover, U-73122, CsA, and VIVIT inhibited CaR-dependent activity of an NFAT construct that drives expression of firefly luciferase in transiently transfected mTAL cells. Collectively, these data verify the role of calcineurin and NFAT in CaR-mediated TNF production by mTAL cells. Activation of the CaR also increased the binding of NFAT to a consensus oligonucleotide, an effect that was blocked by U-73122 and CsA, suggesting that a calcineurin- and NFAT-dependent pathway increases TNF production in mTAL cells. This mechanism likely regulates TNF gene transcription as U-73122, CsA, and VIVIT blocked CaR-dependent activity of a TNF promoter construct. Elucidating CaR-mediated signaling pathways that regulate TNF production in the mTAL will be crucial to understanding mechanisms that regulate extracellular fluid volume and salt balance.


2008 ◽  
Vol 295 (4) ◽  
pp. F1082-F1089 ◽  
Author(s):  
Huda Ismail Abdullah ◽  
Paulina L. Pedraza ◽  
John C. McGiff ◽  
Nicholas R. Ferreri

We determined the functional implications of calcium-sensing receptor (CaR)-dependent, Gq- and Gi-coupled signaling cascades, which work in a coordinated manner to regulate activity of nuclear factor of activated T cells and tumor necrosis factor (TNF)-α gene transcription that cause expression of cyclooxygenase (COX)-2-derived prostaglandin E2 (PGE2) synthesis by rat medullary thick ascending limb cells (mTAL). Interruption of Gq, Gi, protein kinase C (PKC), or calcineurin (CaN) activities abolished CaR-mediated COX-2 expression and PGE2 synthesis. We tested the hypothesis that these pathways contribute to the effects of CaR activation on ion transport in mTAL cells. Ouabain-sensitive O2 consumption, an in vitro correlate of ion transport in the mTAL, was inhibited by ∼70% in cells treated for 6 h with extracellular Ca2+ (1.2 mM), an effect prevented in mTAL cells transiently transfected with a dominant negative CaR overexpression construct (R796W), indicating that the effect was initiated by stimulation of the CaR. Pretreatment with the COX-2-selective inhibitor, NS-398 (1 μM), reversed CaR-activated decreases in ouabain-sensitive O2 consumption by ∼60%, but did not alter basal levels of ouabain-sensitive O2 consumption. Similarly, inhibition of either Gq, Gi, PKC, or CaN, which are components of the mechanism associated with CaR-stimulated COX-2-derived PGE2 synthesis, reversed the inhibitory effects of CaR on O2 consumption without affecting basal O2 consumption. Our findings identified signaling elements required for CaR-mediated TNF production that are integral components regulating mTAL function via a mechanism involving COX-2 expression and PGE2 production.


1999 ◽  
Vol 19 (3) ◽  
pp. 2300-2307 ◽  
Author(s):  
Chi-Wing Chow ◽  
Mercedes Rincón ◽  
Roger J. Davis

ABSTRACT The nuclear factor of activated T cells (NFAT) transcription factor is implicated in expression of the cytokine interleukin-2 (IL-2). Binding sites for NFAT are located in the IL-2 promoter. Furthermore, pharmacological studies demonstrate that the drug cyclosporin A inhibits both NFAT activation and IL-2 expression. However, targeted disruption of the NFAT1 and NFAT2 genes in mice does not cause decreased IL-2 secretion. The role of NFAT in IL-2 gene expression is therefore unclear. Here we report the construction of a dominant-negative NFAT mutant (dnNFAT) that selectively inhibits NFAT-mediated gene expression. The inhibitory effect of dnNFAT is mediated by suppression of activation-induced nuclear translocation of NFAT. Expression of dnNFAT in cultured T cells caused inhibition of IL-2 promoter activity and decreased expression of IL-2 protein. Similarly, expression of dnNFAT in transgenic mice also caused decreased IL-2 gene expression. These data demonstrate that NFAT is a critical component of the signaling pathway that regulates IL-2 expression.


1998 ◽  
Vol 275 (2) ◽  
pp. F198-F203 ◽  
Author(s):  
Marie Céleste De Jesus Ferreira ◽  
Claire Bailly

The effect of activation of the Ca2+-sensing receptor on net Cl flux ( J Cl) has been investigated on microperfused cortical (C) thick ascending limb (TAL) from rat kidney. Increasing bath Ca2+ from 0.5 to 3 mM or adding 200 μM of the specific Ca2+-sensing receptor agonist neomycin reduced basal as well as antidiuretic hormone (ADH)-stimulated J Cl by 27.7 ± 5.0% and 25.9 ± 4.1%, respectively. J Cl remained unchanged in time control tubules. The effect of neomycin/Ca2+ on J Cl was blocked by two protein kinase A inhibitors, H-9 or H-89, but not by a protein kinase C inhibitor, GF-109203X, regardless of whether ADH was present or not. Moreover, H-89 decreased basal J Cl and prevented a further effect of 3 mM Ca2+. When J Cl was increased by 8-bromo-cAMP plus IBMX, no effect of 3 mM Ca2+ was observed. Inhibitors of phospholipase A2 and cytochrome P-450 monooxygenase failed to modify the effect of 3 mM Ca2+, although these agents dampened significantly the inhibitory effect of bradykinin on medullary TAL. We conclude that extracellular Ca2+ decreases basal and ADH-stimulated Cl reabsorption in CTAL by inhibiting the cAMP pathway, independently of protein kinase C or phospholipase A2 stimulation.


1999 ◽  
Vol 276 (3) ◽  
pp. F359-F366 ◽  
Author(s):  
Consuelo Plata ◽  
David B. Mount ◽  
Verena Rubio ◽  
Steven C. Hebert ◽  
Gerardo Gamba

The functional properties of alternatively spliced isoforms of the mouse apical Na+-K+-2Cl−cotransporter (mBSC1) were examined, using expression in Xenopus oocytes and measurement of22Na+or86Rb+uptake. A total of six isoforms, generated by the combinatorial association of three 5′ exon cassettes (A, B, and F) with two alternative 3′ ends, are expressed in mouse thick ascending limb (TAL) [see companion article, D. B. Mount, A. Baekgaard, A. E. Hall, C. Plata, J. Xu, D. R. Beier, G. Gamba, and S. C. Hebert. Am. J. Physiol. 276 ( Renal Physiol. 45): F347–F358, 1999]. The two 3′ ends predict COOH-terminal cytoplasmic domains of 129 amino acids (the C4 COOH terminus) and 457 amino acids (the C9 terminus). The three C9 isoforms (mBSC1-A9/F9/B9) all express Na+-K+-2Cl−cotransport activity, whereas C4 isoforms are nonfunctional in Xenopus oocytes. Activation or inhibition of protein kinase A (PKA) does not affect the activity of the C9 isoforms. The coinjection of mBSC1-A4 with mBSC1-F9 reduces tracer uptake, compared with mBSC1-F9 alone, an effect of C4 isoforms that is partially reversed by the addition of cAMP-IBMX to the uptake medium. The inhibitory effect of C4 isoforms is a dose-dependent function of the alternatively spliced COOH terminus. Isoforms with a C4 COOH terminus thus exert a dominant negative effect on Na+-K+-2Cl−cotransport, a property that is reversed by the activation of PKA. This interaction between coexpressed COOH-terminal isoforms of mBSC1 may account for the regulation of Na+-K+-2Cl−cotransport in the mouse TAL by hormones that generate cAMP.


2001 ◽  
Vol 169 (3) ◽  
pp. 603-611 ◽  
Author(s):  
E Petitfrere ◽  
E Huet ◽  
H Sartelet ◽  
L Martiny ◽  
O Legue ◽  
...  

TSH-treated pig thyroid cells reorganize into follicle-like structures and exhibit differentiated functions. TSH also induces a phosphotyrosine phosphatase (PTPase) activity evaluated by phosphorylated substrate hydrolysis. Incubation of thyrocytes with various concentrations of 8-bromo-cyclic AMP or forskolin induces an increase of PTPase activity in a dose-dependent manner. During the culture period, adenylyl cyclase sensitivity, protein binding iodine and PTPase activity progressively increase from the first to the fourth day of the culture. Chronic treatment with phorbol 12-myristate 13-acetate (PMA) significantly inhibits PTPase activity during the first 24 h following PMA addition. GF 109203X, a specific inhibitor of protein kinase C, abolishes the inhibitory effect of PMA. Electrophoresis of membrane extracts allowed us to demonstrate a phosphatase activity at 111 kDa (p111). Vanadate inhibits this activity, indicating that p111 is a PTPase. This p111 is significantly reduced in PMA-treated cells. These data suggest that PTPase activity evidenced at 111 kDa is correlated with a differentiated state of primary cultured pig thyroid cells induced by TSH.


2001 ◽  
Vol 281 (4) ◽  
pp. F658-F664 ◽  
Author(s):  
Dairong Wang ◽  
Shao-Jian An ◽  
Wen-Hui Wang ◽  
John C. McGiff ◽  
Nicholas R. Ferreri

Primary cultures of medullary thick ascending limb (mTAL) cells retain the capacity to express calcium-sensing receptor (CaR) mRNA and protein. Increases in cyclooxygenase-2 (COX-2) mRNA accumulation, protein expression, and PGE2 synthesis were observed in a dose- and time-dependent manner after exposure of these cells to extracellular calcium (Ca[Formula: see text]). Moreover, transfection of mTAL cells with a CaR overexpression vector significantly enhanced COX-2 expression and PGE2 production in response to calcium compared with cells transfected with an empty vector. Challenge with the CaR-selective agonist poly-l-arginine (PLA) also increased COX-2 mRNA accumulation, protein expression, and PGE2 synthesis. Furthermore, Ca[Formula: see text]- and PLA-mediated PGE2production was abolished in the presence of NS-398 or nimesulide, two different COX-2-selective inhibitors. These data suggest that intracellular signaling mechanisms initiated via activation of CaR contribute to COX-2-dependent PGE2 synthesis in the mTAL. Because Ca[Formula: see text] concentration varies along Henle's loop, calcium may contribute to salt and water balance via a COX-2- and CaR-dependent mechanism. Thus novel calcimimetics might be useful in conditions such as hypertension in which manipulation of extracellular fluid volume provides beneficial effects.


2020 ◽  
Vol 35 (Supplement_3) ◽  
Author(s):  
Federica Petrillo ◽  
Annika Fischer ◽  
Dmitry Chernyakov ◽  
Cristina Esteva Font ◽  
Søren B Poulsen ◽  
...  

Abstract Background and Aims Nuclear Factor of Activated T-Cells 5 (NFAT5), also called TonEBP/OREBP, helps protecting kidney cells from the stress of extracellular hypertonic challenge. In response to hypertonicity, NFAT5 rapidly translocates into the nucleus and enhances the transcription of osmoprotective genes. Mice lacking NFAT5 have embryonic lethality, with those surviving having severe renal atrophy and hydronephrosis. Overexpression of a dominant-negative NFAT5 in all epithelial cells of the thick ascending limb, distal tubule and collecting duct (CD) leads to an impairment in the urine concentration, with reduced expression of AQP2 and urea transporters UT-A1 and UT-A2. Here, we generated a novel mouse model to assess the role of NFAT5 in the water transporting principal cells of the CD. Method The mouse model was generated by breeding floxed NFAT5 mice with mice specifically expressing Cre recombinase in AQP2 expressing cells (NFAT5f/f-AQP2cre+/-). AQP2cre+/- mice served as controls. For renal function analysis, mice were kept in metabolic cages for 5 days and water intake, urinary volume, osmolality, and serum and urine electrolytes were evaluated. Mice were euthanized and the kidneys were used for western blot analysis. Results NFAT5f/f-AQP2cre+/- mice show a significant increase of 24 hour urine output compared to the control (KO: 6.267 ± 0.9367 µl/h/g BW vs WT: 0.9593 ± 0.0796 µl/h/g BW), a decrease in the urine osmolality (KO: 505.6 ± 107.6 mOsm/Kg H2O vs WT: 6205 ± 752.7 mOsm/Kg H2O) and urea concentration. After 3h and half intraperitoneal injection of dDAVP (1ug/kg) the osmolality was still significantly low in NFAT5f/f-AQP2cre+/- mice (KO: 743.7 ± 81.77 vs WT: 3342 ± 80.14 mOsm/Kg H2O), as well as after 8h water restriction (KO: 732.8 ± 24.90 vs WT: 3784 ± 450.9 mOsm/Kg H2O). Immunoblotting demonstrated a significant decrease in AQP2, AQP3 and AQP4 abundance in cortical kidney fractions and inner medulla. There were no differences in vasopressin V2 receptor (V2R) and AVP-regulated transporters NKCC2, ROMK and alpha-ENaC. Conclusion We demonstrate that NFAT5 ablation from AQP2-expressing cells results in a urinary concentration defect. NFAT5f/f-AQP2cre+/- mice have a hypoosmotic polyuria, without major effects on the AVP-V2R axis, suggesting Nephrogenic Diabetes Insipidus.


2013 ◽  
Vol 304 (5) ◽  
pp. F533-F542 ◽  
Author(s):  
Shoujin Hao ◽  
Lars Bellner ◽  
Nicholas R. Ferreri

Pathways that contribute to TNF production by the kidney are not well defined. Mice given 1% NaCl in the drinking water for 3 days exhibited a 2.5-fold increase in urinary, but not plasma, TNF levels compared with mice given tap water. Since furosemide attenuated the increase in TNF levels, we hypothesized that hypertonic NaCl intake increases renal TNF production by a pathway involving the Na+-K+-2Cl− cotransporter (NKCC2). A 2.5-fold increase in NKCC2A mRNA accumulation was observed in medullary thick ascending limb (mTAL) tubules from mice given 1% NaCl; a concomitant 2-fold increase in nuclear factor of activated T cells 5 (NFAT5) mRNA and protein expression was observed in the outer medulla. Urinary TNF levels were reduced in mice given 1% NaCl after an intrarenal injection of a lentivirus construct designed to specifically knockdown NKCC2A (EGFP-N2A-ex4); plasma levels of TNF did not change after injection of EGFP-N2A-ex4. Intrarenal injection of EGFP-N2A-ex4 also inhibited the increase of NFAT5 mRNA abundance in the outer medulla of mice given 1% NaCl. TNF production by primary cultures of mTAL cells increased approximately sixfold in response to an increase in osmolality to 400 mosmol/kgH2O produced with NaCl and was inhibited in cells transiently transfected with a dnNFAT5 construct. Transduction of cells with EGFP-N2A-ex4 also prevented increases in TNF mRNA and protein production in response to high NaCl concentration and reduced transcriptional activity of a NFAT5 promoter construct. Since NKCC2A expression is restricted to the TAL, NKCC2A-dependent activation of NFAT5 is part of a pathway by which the TAL produces TNF in response to hypertonic NaCl intake.


2018 ◽  
Vol 29 (7) ◽  
pp. 1838-1848 ◽  
Author(s):  
Silvana Bazúa-Valenti ◽  
Lorena Rojas-Vega ◽  
María Castañeda-Bueno ◽  
Jonatan Barrera-Chimal ◽  
Rocío Bautista ◽  
...  

Background Hypercalciuria can result from activation of the basolateral calcium-sensing receptor (CaSR), which in the thick ascending limb of Henle’s loop controls Ca2+ excretion and NaCl reabsorption in response to extracellular Ca2+. However, the function of CaSR in the regulation of NaCl reabsorption in the distal convoluted tubule (DCT) is unknown. We hypothesized that CaSR in this location is involved in activating the thiazide-sensitive NaCl cotransporter (NCC) to prevent NaCl loss.Methods We used a combination of in vitro and in vivo models to examine the effects of CaSR on NCC activity. Because the KLHL3-WNK4-SPAK pathway is involved in regulating NaCl reabsorption in the DCT, we assessed the involvement of this pathway as well.Results Thiazide-sensitive 22Na+ uptake assays in Xenopus laevis oocytes revealed that NCC activity increased in a WNK4-dependent manner upon activation of CaSR with Gd3+. In HEK293 cells, treatment with the calcimimetic R-568 stimulated SPAK phosphorylation only in the presence of WNK4. The WNK4 inhibitor WNK463 also prevented this effect. Furthermore, CaSR activation in HEK293 cells led to phosphorylation of KLHL3 and WNK4 and increased WNK4 abundance and activity. Finally, acute oral administration of R-568 in mice led to the phosphorylation of NCC.Conclusions Activation of CaSR can increase NCC activity via the WNK4-SPAK pathway. It is possible that activation of CaSR by Ca2+ in the apical membrane of the DCT increases NaCl reabsorption by NCC, with the consequent, well known decrease of Ca2+ reabsorption, further promoting hypercalciuria.


Sign in / Sign up

Export Citation Format

Share Document