Caspase-3 dependent peritubular capillary dysfunction is pivotal for transition from acute to chronic kidney disease after acute ischemia-reperfusion injury

Author(s):  
Shanshan Lan ◽  
Bing Yang ◽  
Francis Migneault ◽  
Julie Turgeon ◽  
Maude Bourgault ◽  
...  

Ischemia-reperfusion injury (IRI) is a major risk factor for chronic renal failure. Caspase-3, an effector responsible for apoptosis execution, is activated within peritubular capillary (PTC) in the early stage of IRI-induced acute kidney injury (AKI). Recently, we showed that caspase-3-dependent microvascular rarefaction plays a key role in fibrosis development after mild renal IRI. Here, we further characterize the role of caspase-3 in microvascular dysfunction and progressive renal failure in both mild and severe AKI, by performing unilateral renal artery clamping for 30/60 minutes with contralateral nephrectomy in wild-type (C57BL/6) or caspase-3-/- mice. In both forms of AKI, caspase-3-/- mice showed better long-term outcomes in spite of worse initial tubular injury. After 3 weeks, they showed reduced PTC injury, decreased PTC collagen deposition and α-SMA expression, and lower tubular injury scores when compared to wild-type animals. Caspase-3-/- mice with severe IRI also showed better preservation of long-term renal function. Intra-vital imaging and micro Computed Tomography (microCT) revealed preserved PTCs permeability and better terminal capillary density in caspase-3-/- mice. Collectively, these results demonstrate the pivotal importance of caspase-3 in regulating long-term renal function after IRI and establish the predominant role of PTCs dysfunction as a major contributor to progressive renal dysfunction.

2019 ◽  
Vol 317 (5) ◽  
pp. F1383-F1397 ◽  
Author(s):  
Anna Menshikh ◽  
Lauren Scarfe ◽  
Rachel Delgado ◽  
Charlene Finney ◽  
Yuantee Zhu ◽  
...  

Acute kidney injury (AKI) is a strong independent predictor of mortality and often results in incomplete recovery of renal function, leading to progressive chronic kidney disease (CKD). Many clinical trials have been conducted on the basis of promising preclinical data, but no therapeutic interventions have been shown to improve long-term outcomes after AKI. This is partly due to the failure of preclinical studies to accurately model clinically relevant injury and long-term outcomes on CKD progression. Here, we evaluated the long-term effects of AKI on CKD progression in three animal models reflecting diverse etiologies of AKI: repeat-dose cisplatin, rhabdomyolysis, and ischemia-reperfusion injury. Using transdermal measurement of glomerular filtration rate as a clinically relevant measure of kidney function and quantification of peritubular capillary density to measure capillary rarefaction, we showed that repeat-dose cisplatin caused capillary rarefaction and decreased renal function in mice without a significant increase in interstitial fibrosis, whereas rhabdomyolysis-induced AKI led to severe interstitial fibrosis, but renal function and peritubular capillary density were preserved. Furthermore, long-term experiments in mice with unilateral ischemia-reperfusion injury showed that restoration of renal function 12 wk after a contralateral nephrectomy was associated with increasing fibrosis, but a reversal of capillary rarefaction was seen at 4 wk. These data demonstrate that clear dissociation between kidney function and fibrosis in these models of AKI to CKD progression and suggest that peritubular capillary rarefaction is more strongly associated with CKD progression than renal fibrosis.


2018 ◽  
Vol 29 (7) ◽  
pp. 1900-1916 ◽  
Author(s):  
Bing Yang ◽  
Shanshan Lan ◽  
Mélanie Dieudé ◽  
Jean-Paul Sabo-Vatasescu ◽  
Annie Karakeussian-Rimbaud ◽  
...  

Background Ischemia-reperfusion injury (IRI) is a major risk factor for chronic renal failure. Here, we characterize the different modes of programmed cell death in the tubular and microvascular compartments during the various stages of IRI-induced AKI, and their relative importance to renal fibrogenesis.Methods We performed unilateral renal artery clamping for 30 minutes and contralateral nephrectomy in wild-type mice (C57BL/6) or caspase-3−/− mice.Results Compared with their wild-type counterparts, caspase-3−/− mice in the early stage of AKI had high urine cystatin C levels, tubular injury scores, and serum creatinine levels. Electron microscopy revealed evidence of tubular epithelial cell necrosis in caspase-3−/− mice, and immunohistochemistry showed upregulation of the necroptosis marker receptor-interacting serine/threonine-protein kinase 3 (RIPK3) in renal cortical sections. Western blot analysis further demonstrated enhanced levels of phosphorylated RIPK3 in the kidneys of caspase-3−/− mice. In contrast, caspase-3−/− mice had less microvascular congestion and activation in the early and extension phases of AKI. In the long term (3 weeks after IRI), caspase-3−/− mice had reduced microvascular rarefaction and renal fibrosis, as well as decreased expression of α-smooth muscle actin and reduced collagen deposition within peritubular capillaries. Moreover, caspase-3−/− mice exhibited signs of reduced tubular ischemia, including lower tubular expression of hypoxia-inducible factor-1α and improved tubular injury scores.Conclusions These results establish the pivotal importance of caspase-3 in regulating microvascular endothelial cell apoptosis and renal fibrosis after IRI. These findings also demonstrate the predominant role of microvascular over tubular injury as a driver of progressive renal damage and fibrosis after IRI.


2003 ◽  
Vol 284 (5) ◽  
pp. F1046-F1055 ◽  
Author(s):  
Kamyar Zahedi ◽  
Zhaohui Wang ◽  
Sharon Barone ◽  
Anne E. Prada ◽  
Caitlin N. Kelly ◽  
...  

Ischemia-reperfusion injury (IRI) is the major cause of acute renal failure in native and allograft kidneys. Identifying the molecules and pathways involved in the pathophysiology of renal IRI will yield valuable new diagnostic and therapeutic information. To identify differentially regulated genes in renal IRI, RNA from rat kidneys subjected to an established renal IRI protocol (bilateral occlusion of renal pedicles for 30 min followed by reperfusion) and time-matched kidneys from sham-operated animals was subjected to suppression subtractive hybridization. The level of spermidine/spermine N 1-acetyltransferase (SSAT) mRNA, an essential enzyme for the catabolism of polyamines, increased in renal IRI. SSAT expression was found throughout normal kidney tubules, as detected by nephron segment RT-PCR. Northern blots demonstrated that the mRNA levels of SSAT are increased by greater than threefold in the renal cortex and by fivefold in the renal medulla at 12 h and returned to baseline at 48 h after ischemia. The increase in SSAT mRNA was paralleled by an increase in SSAT protein levels as determined by Western blot analysis. The concentration of putrescine in the kidney increased by ∼4- and ∼7.5-fold at 12 and 24 h of reperfusion, respectively, consistent with increased functional activity of SSAT. To assess the specificity of SSAT for tubular injury, a model of acute renal failure from Na+depletion (without tubular injury) was studied; SSAT mRNA levels remained unchanged in rats subjected to Na+ depletion. To distinguish SSAT increases from the effects of tubular injury vs. uremic toxins, SSAT was increased in cis-platinum-treated animals before the onset of renal failure. The expression of SSAT mRNA and protein increased by ∼3.5- and >10-fold, respectively, in renal tubule epithelial cells subjected to ATP depletion and metabolic poisoning (an in vitro model of kidney IRI). Our results suggest that SSAT is likely a new marker of tubular cell injury that distinguishes acute prerenal from intrarenal failure.


2007 ◽  
Vol 293 (3) ◽  
pp. F741-F747 ◽  
Author(s):  
Kathrin Hochegger ◽  
Tobias Schätz ◽  
Philipp Eller ◽  
Andrea Tagwerker ◽  
Dorothea Heininger ◽  
...  

T cells have been implicated in the pathogenesis of renal ischemia-reperfusion injury (IRI). To date existing data about the role of the T cell receptor (Tcr) are contradictory. We hypothesize that the Tcr plays a prominent role in the late phase of renal IRI. Therefore, renal IRI was induced in α/β, γ/δ T cell-deficient and wild-type mice by clamping renal pedicles for 30 min and reperfusing for 24, 48, 72, and 120 h. Serum creatinine increased equally in all three groups 24 h after ischemia but significantly improved in Tcr-deficient animals compared with wild-type controls after 72 h. A significant reduction in renal tubular injury and infiltration of CD4+ T-cells in both Tcr-deficient mice compared with wild-type controls was detected. Infiltration of α/β T cells into the kidney was reduced in γ/δ T cell-deficient mice until 72 h after ischemia. In contrast, γ/δ T cell infiltration was equal in wild-type and α/β T cell-deficient mice, suggesting an interaction between α/β and γ/δ T cells. Data from γ/δ T cell-deficient mice were confirmed by in vivo depletion of γ/δ T cells in C57BL/6 mice. Whereas α/β T cell-deficient mice were still protected after 120 h, γ/δ T cell-deficient mice showed a “delayed wild-type phenotype” with a dramatic increase in kidney-infiltrating α/β, Tcr-expressing CD4+ T-cells. This report provides further evidence that α/β T cells are major effector cells in renal IRI, whereas γ/δ T cells play a role as mediator cells in the first 72 h of renal IRI.


2014 ◽  
Vol 46 (21) ◽  
pp. 789-797 ◽  
Author(s):  
Xialian Xu ◽  
Alison J. Kriegel ◽  
Xiaoyan Jiao ◽  
Hong Liu ◽  
Xiaowen Bai ◽  
...  

MicroRNAs (miRNAs or miRs) are endogenous, small RNA molecules that suppress expression of targeted mRNA. miR-21, one of the most extensively studied miRNAs, is importantly involved in divergent pathophysiological processes relating to ischemia/reperfusion (I/R) injury, such as inflammation and angiogenesis. The role of miR-21 in renal I/R is complex, with both protective and pathological pathways being regulated by miR-21. Preconditioning-induced upregulation of miR-21 contributes to the protection against subsequent renal I/R injury through the targeting of genes such as the proapoptotic gene programmed cell death 4 and interactions between miR-21 and hypoxia-inducible factor. Conversely, long-term elevation of miR-21 may be detrimental to the organ by promoting the development of renal interstitial fibrosis following I/R injury. miR-21 is importantly involved in several pathophysiological processes related to I/R injury including inflammation and angiogenesis as well as the biology of stem cells that could be used to treat I/R injury; however, the effect of miR-21 on these processes in renal I/R injury remains to be studied.


2019 ◽  
Vol 39 (8) ◽  
Author(s):  
Liyuan Zou ◽  
Xiaokun Ma ◽  
Shuo Lin ◽  
Bingyuan Wu ◽  
Yang Chen ◽  
...  

Abstract Long noncoding RNA (lncRNA) maternally expressed gene 3 (MEG3) plays an important role in protection of ischemia–reperfusion (I/R) injury in brain and liver. However, role of MEG3 in myocardial I/R injury remains unclear. Here, the role of MEG3 in protection of myocardial I/R injury and its association with microRNA-7-5p (miR-7-5p) was investigated using rat cardiac I/R model and myocardial I/R cell model. Our results showed that MEG3 was significantly up-regulated and miR-7-5p was significantly down-regulated after I/R. Following I/R, the levels of intact PARP and intact caspase-3 were reduced, while the cleaved fragments of PARP and caspase-3 were increased. TUNEL assay showed an increase in cardiomyocyte apoptosis after I/R. The levels of I/R-induced creatine kinase (CK) and lactate dehydrogenase (LDH) were inhibited by knockdown of MEG3 (siMEG3). SiMEG3 increased cell proliferation and inhibited cell apoptosis after I/R. In contrast, overexpression of MEG3 increased the I/R-induced CK and LDH activities and cell apoptosis and decreased cell proliferation. The dual-luciferase reporter system showed a direct binding of MEG3 to miR-7-5p. The level of miR-7-5p was negatively associated with the change in levels of MEG3 in H9c2 cells. The levels of intact RARP1 and caspase-3 were significantly increased by knockdown of MEG3. Co-transfection of miR-7-5p inhibitor with siMEG3 activates CK and LDH, significantly decreased cell proliferation, increased cell apoptosis, and decreased intact poly(ADP-ribose) polymerase 1 (PARP1) and caspase-3. In summary, down-regulation of MEG3 protects myocardial cells against I/R-induced apoptosis through miR-7-5p/PARP1 pathway, which might provide a new therapeutic target for treatment of myocardial I/R injury.


2021 ◽  
Vol 12 ◽  
Author(s):  
Yingying Xiao ◽  
Junpeng Li ◽  
Lisheng Qiu ◽  
Chuan Jiang ◽  
Yanhui Huang ◽  
...  

Background: Ischemia-reperfusion injury (I/R) strongly affects the prognosis of children with complicated congenital heart diseases (CHDs) who undergo long-term cardiac surgical processes. Recently, the α2-adrenergic receptor agonist Dexmedetomidine (Dex) has been reported to protect cardiomyocytes (CMs) from I/R in cellular models and adult rodent models. However, whether and how Dex may protect human CMs in young children remains largely unknown.Methods and Results: Human ventricular tissue from tetralogy of Fallot (TOF) patients and CMs derived from human-induced pluripotent stem cells (iPSC-CMs) were used to assess whether and how Dex protects human CMs from I/R. The results showed that when pretreated with Dex, the apoptosis marker-TUNEL and cleaved caspase 3 in the ventricular tissue were significantly reduced. In addition, the autophagy marker LC3II was significantly increased compared with that of the control group. When exposed to the hypoxia/reoxygenation process, iPSC-CMs pretreated with Dex also showed reduced TUNEL and cleaved caspase 3 and increased LC3II. When the autophagy inhibitor (3-methyladenine, 3-MA) was applied to the iPSC-CMs, the protective effect of Dex on the CMs was largely blocked. In addition, when the fusion of autophagosomes with lysosomes was blocked by Bafilomycin A1, the degradation of p62 induced by Dex during the autophagy process was suspended. Moreover, when pretreated with Dex, both the human ventricle and the iPSC-CMs expressed more AMP-activated protein kinase (AMPK) and phospho AMPK (pAMPK) during the I/R process. After AMPK knockout or the use of an α2-adrenergic receptor antagonist-yohimbine, the protection of Dex and its enhancement of autophagy were inhibited.Conclusion: Dex protects young human CMs from I/R injury, and α2-adrenergic receptor/AMPK-dependent autophagy plays an important role during this process. Dex may have a therapeutic effect for children with CHD who undergo long-term cardiac surgical processes.


2017 ◽  
Vol 29 (1) ◽  
pp. 168-181 ◽  
Author(s):  
Weiju Wu ◽  
Chengfei Liu ◽  
Conrad A. Farrar ◽  
Liang Ma ◽  
Xia Dong ◽  
...  

Collectin-11 is a recently described soluble C-type lectin, a pattern recognition molecule of the innate immune system that has distinct roles in host defense, embryonic development, and acute inflammation. However, little is known regarding the role of collectin-11 in tissue fibrosis. Here, we investigated collectin-11 in the context of renal ischemia-reperfusion injury. Compared with wild-type littermate controls, Collec11 deficient (CL-11−/−) mice had significantly reduced renal functional impairment, tubular injury, renal leukocyte infiltration, renal tissue inflammation/fibrogenesis, and collagen deposition in the kidneys after renal ischemia-reperfusion injury. In vitro, recombinant collectin-11 potently promoted leukocyte migration and renal fibroblast proliferation in a carbohydrate-dependent manner. Additionally, compared with wild-type kidney grafts, CL-11−/−mice kidney grafts displayed significantly reduced tubular injury and collagen deposition after syngeneic kidney transplant. Our findings demonstrate a pathogenic role for collectin-11 in the development of tubulointerstitial fibrosis and suggest that local collectin-11 promotes this fibrosis through effects on leukocyte chemotaxis and renal fibroblast proliferation. This insight into the pathogenesis of tubulointerstitial fibrosis may have implications for CKD mediated by other causes as well.


Sign in / Sign up

Export Citation Format

Share Document