High glucose-induced RhoA activation requires caveolae and PKCβ1-mediated ROS generation

2012 ◽  
Vol 302 (1) ◽  
pp. F159-F172 ◽  
Author(s):  
Y. Zhang ◽  
F. Peng ◽  
B. Gao ◽  
A. J. Ingram ◽  
J. C. Krepinsky

Glomerular matrix accumulation is a hallmark of diabetic nephropathy. We previously showed that RhoA activation by high glucose in mesangial cells (MC) leads to matrix upregulation (Peng F, Wu D, Gao B, Ingram AJ, Zhang B, Chorneyko K, McKenzie R, Krepinsky JC. Diabetes 57: 1683–1692, 2008). Here, we study the mechanism whereby RhoA is activated. In primary rat MC, RhoA activation required glucose entry and metabolism. Broad PKC inhibitors (PMA, bisindolylmaleimide, Gö6976), as well as specific PKCβ blockade with an inhibitor and small interfering RNA (siRNA), prevented RhoA activation by glucose. PKCβ inhibition also abrogated reactive oxygen species (ROS) generation by glucose. The ROS scavenger N-acetylcysteine (NAC) or NADPH oxidase inhibitors apocynin and DPI prevented glucose-induced RhoA activation. RhoA and some PKC isoforms localize to caveolae. Chemical disruption of these microdomains prevented RhoA and PKCβ1 activation by glucose. In caveolin-1 knockout cells, glucose did not induce RhoA and PKCβ1 activation; these responses were rescued by caveolin-1 reexpression. Furthermore, glucose-induced ROS generation was significantly attenuated by chemical disruption of caveolae and in knockout cells. Downstream of RhoA signaling, activator protein-1 (AP-1) activation was also inhibited by disrupting caveolae, was absent in caveolin-1 knockout MC and rescued by caveolin-1 reexpression. Finally, transforming growth factor (TGF)-β1 upregulation, mediated by AP-1, was prevented by RhoA signaling inhibition and by disruption or absence of caveolae. In conclusion, RhoA activation by glucose is dependent on PKCβ1-induced ROS generation, most likely through NADPH oxidase. The activation of PKCβ1 and its downstream effects, including upregulation of TGF-β1, requires caveolae. These microdomains are thus important mediators of the profibrogenic process associated with diabetic nephropathy.

2021 ◽  
Vol 22 (9) ◽  
pp. 4741
Author(s):  
Makiyo Okamura ◽  
Noboru Fukuda ◽  
Shu Horikoshi ◽  
Hiroki Kobayashi ◽  
Akiko Tsunemi ◽  
...  

Upstream stimulatory factor 1 (USF1) is a transcription factor that is increased in high-glucose conditions and activates the transforming growth factor (TGF)-β1 promoter. We examined the effects of synthetic pyrrole-imidazole (PI) polyamides in preventing USF1 binding on the TGF-β1 promoter in Wistar rats in which diabetic nephropathy was established by intravenous administration of streptozotocin (STZ). High glucose induced nuclear localization of USF1 in cultured mesangial cells (MCs). In MCs with high glucose, USF1 PI polyamide significantly inhibited increases in promoter activity of TGF-β1 and expression of TGF-β1 mRNA and protein, whereas it significantly decreased the expression of osteopontin and increased that of h-caldesmon mRNA. We also examined the effects of USF1 PI polyamide on diabetic nephropathy. Intraperitoneal injection of USF1 PI polyamide significantly suppressed urinary albumin excretion and decreased serum urea nitrogen in the STZ-diabetic rats. USF1 PI polyamide significantly decreased the glomerular injury score and tubular injury score in the STZ-diabetic rats. It also suppressed the immunostaining of TGF-β1 in the glomerulus and proximal tubules and significantly decreased the expression of TGF-β1 protein from kidney in these rats. These findings indicate that synthetic USF1 PI polyamide could potentially be a practical medicine for diabetic nephropathy.


2016 ◽  
Vol 310 (6) ◽  
pp. F547-F559 ◽  
Author(s):  
Yanjuan Hou ◽  
Shuangcheng Li ◽  
Ming Wu ◽  
Jinying Wei ◽  
Yunzhuo Ren ◽  
...  

Oxidative stress is implicated in the pathogenesis of diabetic kidney injury. SS-31 is a mitochondria-targeted tetrapeptide that can scavenge reactive oxygen species (ROS). Here, we investigated the effect and molecular mechanism of mitochondria-targeted antioxidant peptide SS-31 on injuries in diabetic kidneys and mouse mesangial cells (MMCs) exposed to high-glucose (HG) ambience. CD-1 mice underwent uninephrectomy and streptozotocin treatment prior to receiving daily intraperitoneal injection of SS-31 for 8 wk. The diabetic mice treated with SS-31 had alleviated proteinuria, urinary 8-hydroxy-2-deoxyguanosine level, glomerular hypertrophy, and accumulation of renal fibronectin and collagen IV. SS-31 attenuated renal cell apoptosis and expression of Bax and reversed the expression of Bcl-2 in diabetic mice kidneys. Furthermore, SS-31 inhibited expression of transforming-growth factor (TGF)-β1, Nox4, and thioredoxin-interacting protein (TXNIP), as well as activation of p38 MAPK and CREB and NADPH oxidase activity in diabetic kidneys. In vitro experiments using MMCs revealed that SS-31 inhibited HG-mediated ROS generation, apoptosis, expression of cleaved caspase-3, Bax/Bcl-2 ratio, and cytochrome c (cyt c) release from mitochondria. SS-31 normalized mitochondrial potential (ΔΨm) and ATP alterations, and inhibited the expression of TGF-β1, Nox4, and TXNIP, as well as activation of p38 MAPK and CREB and NADPH oxidase activity in MMCs under HG conditions. SS-31 treatment also could reverse the reduction of thioredoxin (TRX) biologic activity and upregulate expression of thioredoxin 2 (TRX2) in MMCs under HG conditions. In conclusion, this study demonstrates a protective effect of SS-31 against HG-induced renal injury via an antioxidant mechanism in diabetic nephropathy.


2008 ◽  
Vol 295 (6) ◽  
pp. F1705-F1714 ◽  
Author(s):  
Ling Xia ◽  
Hong Wang ◽  
Snezana Munk ◽  
Janice Kwan ◽  
Howard J. Goldberg ◽  
...  

Conversion of normally quiescent mesangial cells into extracellular matrix-overproducing myofibroblasts in response to high ambient glucose and transforming growth factor (TGF)-β1 is central to the pathogenesis of diabetic nephropathy. Previously, we reported that mesangial cells respond to high glucose by generating reactive oxygen species (ROS) from NADPH oxidase dependent on protein kinase C (PKC) -ζ activation. We investigated the role of TGF-β1 in this action of high glucose on primary rat mesangial cells within 1–48 h. Both high glucose and exogenous TGF-β1 stimulated PKC-ζ kinase activity, as measured by an immune complex kinase assay and immunofluorescence confocal cellular imaging. In high glucose, Akt Ser473 phosphorylation appeared within 1 h and Smad2/3 nuclear translocation was prevented with neutralizing TGF-β1 antibodies. Neutralizing TGF-β1 antibodies, or a TGF-β receptor kinase inhibitor (LY364947), or a phosphatidylinositol 3,4,5-trisphosphate (PI3) kinase inhibitor (wortmannin), prevented PKC-ζ activation by high glucose. TGF-β1 also stimulated cellular membrane translocation of PKC-α, -β1, -δ, and -ε, similar to high glucose. High glucose and TGF-β1 enhanced ROS generation by mesangial cell NADPH oxidase, as detected by 2,7-dichlorofluorescein immunofluorescence. This response was abrogated by neutralizing TGF-β1 antibodies, LY364947, or a specific PKC-ζ pseudosubstrate peptide inhibitor. Expression of constitutively active PKC-ζ in normal glucose caused upregulation of p22phox, a likely mechanism of NADPH oxidase activation. We conclude that very early responses of mesangial cells to high glucose include autocrine TGF-β1 stimulation of PKC isozymes including PI3 kinase activation of PKC-ζ and consequent generation of ROS by NADPH oxidase.


2010 ◽  
Vol 299 (6) ◽  
pp. F1348-F1358 ◽  
Author(s):  
M. Sedeek ◽  
G. Callera ◽  
A. Montezano ◽  
A. Gutsol ◽  
F. Heitz ◽  
...  

Molecular mechanisms underlying renal complications of diabetes remain unclear. We tested whether renal NADPH oxidase (Nox) 4 contributes to increased reactive oxygen species (ROS) generation and hyperactivation of redox-sensitive signaling pathways in diabetic nephropathy. Diabetic mice ( db/ db) (20 wk) and cultured mouse proximal tubule (MPT) cells exposed to high glucose (25 mmol/l, d-glucose) were studied. Expression (gene and protein) of Nox4, p22phox, and p47phox, but not Nox1 or Nox2, was increased in kidney cortex, but not medulla, from db/ db vs. control mice ( db/ m) ( P < 0.05). ROS generation, p38 mitogen-activated protein (MAP) kinase phosphorylation, and content of fibronectin and transforming growth factor (TGF)-β1/2 were increased in db/ db vs. db/ m ( P < 0.01). High glucose increased expression of Nox4, but not other Noxes vs. normal glucose ( P < 0.05). This was associated with increased NADPH oxidase activation and enhanced ROS production. Nox4 downregulation by small-interfering RNA and inhibition of Nox4 activity by GK-136901 (Nox1/4 inhibitor) attenuated d-glucose-induced NADPH oxidase-derived ROS generation. High d-glucose, but not l-glucose, stimulated phosphorylation of p38MAP kinase and increased expression of TGF-β1/2 and fibronectin, effects that were inhibited by SB-203580 (p38MAP kinase inhibitor). GK-136901 inhibited d-glucose-induced actions. Our data indicate that, in diabetic conditions: 1) renal Nox4 is upregulated in a cortex-specific manner, 2) MPT cells possess functionally active Nox4-based NADPH, 3) Nox4 is a major source of renal ROS, and 4) activation of profibrotic processes is mediated via Nox4-sensitive, p38MAP kinase-dependent pathways. These findings implicate Nox4-based NADPH oxidase in molecular mechanisms underlying fibrosis in type 2 diabetic nephropathy.


2011 ◽  
Vol 301 (4) ◽  
pp. E713-E726 ◽  
Author(s):  
Howard Goldberg ◽  
Catharine Whiteside ◽  
I. George Fantus

Hyperglycemia augments flux through the hexosamine biosynthetic pathway and subsequent O-linkage of single β- N-acetyl-d-glucosamine moieties to serine and threonine residues on cytoplasmic and nuclear proteins ( O-GlcNAcylation). Perturbations in this posttranslational modification have been proposed to promote glomerular matrix accumulation in diabetic nephropathy, but clear evidence and mechanism are lacking. We tested the hypothesis that O-GlcNAcylation enhances profibrotic signaling in rat mesangial cells. An adenovirus expressing shRNA directed against O-GlcNAc transferase (OGT) markedly reduced basal and high-glucose-stimulated O-GlcNAcylation. Interestingly, O-GlcNAc depletion prevented high-glucose-induced p38 mitogen-activated protein kinase (MAPK) and c-Jun NH2-terminal kinase phosphorylation. Downstream of p38, O-GlcNAc controlled the expression of plasminogen activator inhibitor-1, fibronectin, and transforming growth factor-β, important factors in matrix accumulation in diabetic nephropathy. Treating mesangial cells with thiamet-G, a highly selective inhibitor of O-GlcNAc-specific hexosaminidase ( O-GlcNAcase), increased O-GlcNAcylation and p38 phosphorylation. The high-glucose-stimulated kinase activity of apoptosis signal-regulating kinase 1 (ASK1), an upstream MAPK kinase kinase for p38 that is negatively regulated by Akt, was inhibited by OGT shRNA. Akt Thr308 and Ser473 phosphorylation were enhanced following OGT shRNA expression in high-glucose-exposed mesangial cells, but high-glucose-induced p38 phosphorylation was not attenuated by OGT shRNA in cells pretreated with the phosphatidylinositol 3-kinase inhibitor LY-294002. OGT shRNA also reduced high-glucose-stimulated reactive oxygen species (ROS) formation. In contrast, diminished O-GlcNAcylation caused elevated ERK phosphorylation and PKCδ membrane translocation. Thus, O-GlcNAcylation is coupled to profibrotic p38 MAPK signaling by high glucose in part through Akt and possibly through ROS.


2014 ◽  
Vol 306 (11) ◽  
pp. F1308-F1317 ◽  
Author(s):  
Su-Zhen Wu ◽  
Fang-Fang Peng ◽  
Jia-Lin Li ◽  
Feng Ye ◽  
Shao-Qing Lei ◽  
...  

Glomerular matrix accumulation is a hallmark of diabetic renal disease. Serine/threonine kinase PKC-β1 mediates glucose-induced Akt S473 phosphorylation, RhoA activation, and transforming growth factor (TGF)-β1 upregulation and finally leads to matrix upregulation in mesangial cells (MCs). It has been reported that glucose-induced PKC-β1 activation is dependent on caveolin-1 and the presence of intact caveolae in MCs; however, whether activated PKC-β1 regulates caveolin-1 expression and phosphorylation are unknown. Here, we showed that, although the caveolin-1 protein level had no significant change, the PKC-β-specific inhibitor LY-333531 blocked caveolin-1 Y14 phosphorylation in high glucose (HG)-treated MCs and in the renal cortex of diabetic rats. The Src-specific inhibitor SU-6656 prevented the HG-induced association between PKC-β1 and caveolin-1 and PKC-β1 membrane translocation, whereas PKC-β1 small interfering RNA failed to block Src activation, indicating that Src kinase is upstream of PKC-β1 activation. Although LY-333531 blocked PKC-β1 membrane translocation, it had no effect on the PKC-β1/caveolin-1 association, suggesting that PKC-β1 activation requires the interaction of caveolin-1 and PKC-β1. PKC-β1-mediated Akt S473 phosphorylation, RhoA activation, and fibronectin upregulation in response to HG were prevented by SU-6656 and nonphosphorylatable mutant caveolin-1 Y14A. In conclusion, Src activation by HG mediates the PKC-β1/caveolin-1 association and PKC-β1 activation, which assists in caveolin-1 Y14 phosphorylation by Src kinase. The downstream effects, including Akt S473 phosphorylation, RhoA activation, and fibronectin upregulation, require caveolin-1 Y14 phosphorylation. Caveolin-1 is thus an important mediator of the profibrogenic process in diabetic renal disease.


2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Weifeng Wu ◽  
Yifan Wang ◽  
Haidi Li ◽  
Haiyong Chen ◽  
Jiangang Shen

Abstract Background Buyang Huanwu Decoction (BHD) is a classical Chinese Medicine formula empirically used for diabetic nephropathy (DN). However, its therapeutic efficacies and the underlying mechanisms remain obscure. In our study, we aim to evaluate the renoprotective effect of BHD on a streptozotocin (STZ)-induced diabetic nephropathy mouse model and explore the potential underlying mechanism in mouse mesangial cells (MCs) treated with high glucose in vitro, followed by screening the active compounds in BHD. Methods Mice were received 50 mg/kg streptozotocin (STZ) or citrate buffer intraperitoneally for 5 consecutive days. BHD was intragastrically administrated for 12 weeks starting from week 4 after the diabetes induction. The quality control and quantitative analysis of BHD were studied by high-performance liquid chromatography (HPLC). Renal function was evaluated by urinary albumin excretion (UAE) using ELISA. The mesangial matrix expansion and renal fibrosis were measured using periodic acid-schiff (PAS) staining and Masson Trichrome staining. Mouse mesangial cells (MCs) were employed to study molecular mechanisms. Results We found that the impaired renal function in diabetic nephropathy was significantly restored by BHD, as indicated by the decreased UAE without affecting the blood glucose level. Consistently, BHD markedly alleviated STZ-induced diabetic glomerulosclerosis and tubulointerstitial injury as shown by PAS staining, accompanied by a reduction of renal inflammation and fibrosis. Mechanistically, BHD inhibited the activation of TGF-β1/Smad3 and NF-κB signaling in diabetic nephropathy while suppressing Arkadia expression and restoring renal Smad7. We further found that calycosin-7-glucoside (CG) was one of the active compounds from BHD, which significantly suppressed high glucose-induced inflammation and fibrosis by inhibiting TGF-β1/Smad3 and NF-κB signaling pathways in mesangial cells. Conclusion BHD could attenuate renal fibrosis and inflammation in STZ-induced diabetic kidneys via inhibiting TGF-β1/Smad3 and NF-κB signaling while suppressing the Arkadia and restoring renal Smad7. CG could be one of the active compounds in BHD to suppress renal inflammation and fibrosis in diabetic nephropathy.


2000 ◽  
Vol 11 (1) ◽  
pp. 80-87
Author(s):  
SUNG IL KIM ◽  
DONG CHEOL HAN ◽  
HI BAHL LEE

Abstract. Diabetic nephropathy is a leading cause of end-stage renal disease and is characterized by excessive deposition of extracellular matrix (ECM) proteins in the glomeruli. Transforming growth factor-β (TGF-β) is the major mediator of excessive accumulation of ECM proteins in diabetic nephropathy through upregulation of genes encoding ECM proteins as well as downregulation of genes for ECM-degrading enzymes. It has been shown that lovastatin, an inhibitor of 3-hydroxy-3-methylglutaryl CoA reductase, delays the onset and progression of different models of experimental nephropathy. To evaluate the effect of lovastatin on the development and progression of diabetic nephropathy, streptozotocin-induced diabetic rats were studied for 12 mo. In untreated diabetic rats, there were significant increases in blood glucose, urine albumin excretion, kidney weight, glomerular volume, and TGF-β1 mRNA expression in the glomeruli compared with normal control rats treated with citrate buffer only. Treatment with lovastatin in diabetic rats significantly suppressed the increase in urine albumin excretion, kidney weight, glomerular volume, and TGF-β1 mRNA expression despite high blood glucose levels. To elucidate the mechanisms of the renal effects of lovastatin, rat mesangial cells were cultured under control (5.5 mM) or high (30 mM) glucose with lovastatin alone, mevalonate alone, or with both. Under high glucose, TGF-β1 and fibronectin mRNA and proteins were upregulated. These high glucose-induced changes were suppressed by lovastatin (10 μM) and nearly completely restored by mevalonate (100 μM). These results suggest that lovastatin has a direct cellular effect independent of a cholesterol-lowering effect and delays the onset and progression of diabetic nephropathy, at least in part, through suppression of glomerular expression of TGF-β1.


2006 ◽  
Vol 290 (2) ◽  
pp. F345-F356 ◽  
Author(s):  
L. Xia ◽  
H. Wang ◽  
H. J. Goldberg ◽  
S. Munk ◽  
I. G. Fantus ◽  
...  

Excess collagen IV expression by mesangial cells contributes to diabetic glomerulosclerosis. We hypothesized that in high glucose reactive oxygen species (ROS) generation by NADPH oxidase is PKC dependent and required for collagen IV expression by mesangial cells. In rat mesangial cells cultured in 5 mM (NG) or 25 mM d-glucose (HG), RT-PCR and Western immunoblotting detected p22phox and p47phox mRNA and protein, respectively. Quantitative real-time RT-PCR analyzed collagen IV mRNA. With the use of confocal microscopy, ROS were detected with dichlorofluorescein and intracellular collagen IV by immunofluorescence. In HG, ROS were generated within 1 h, sustained up to 48 h, and prevented by a NADPH oxidase inhibitor, diphenylenechloride iodonium (DPI), or a conventional PKC isozyme inhibitor, Gö6976. In NG, phorbol myristate acetate stimulated ROS generation that was inhibited with DPI. In HG, expression of p22phox and p47phox was increased within 3 to 6 h and inhibited by Gö6976. In HG, Gö6976 or transfection with antisense against p22phox reversed the 1.8-fold increase in collagen IV mRNA. In HG, the antioxidants Tempol or Tiron, or transfection with antisense against p22phox or p47phox, prevented ROS generation and the 2.3-fold increase in collagen IV protein. Increased mitochondrial redox potential in HG was unaffected by transfection with antisense against p22phox. We conclude that in HG, mesangial cell ROS generation by upregulated NADPH oxidase is dependent on conventional PKC isozymes and also required for collagen IV expression.


2001 ◽  
Vol 12 (4) ◽  
pp. 703-712 ◽  
Author(s):  
NATALIA YEVDOKIMOVA ◽  
NADIA ABDEL WAHAB ◽  
ROGER M. MASON

Abstract. Elevated levels of transforming growth factor-β1 (TGF-β1) are synthesized by human mesangial cells that are cultured in medium that contains high concentrations of glucose and mediate increased synthesis of fibronectin (FN), plasminogen activator inhibitor-1 (PAI-1), and changes in the expression of other genes. TGF-β1 is synthesized as a latent complex. Previous work indicated that high-glucose conditions also upregulate expression of thrombospondin-1 (TSP-1), a potential activator of latent TGF-β1. With the use of the synthetic peptide GGWSHW, an inhibitor of the TSP-1 activation mechanism, endogenous TSP-1 is shown to be responsible for converting high levels of latent TGF-β1 to bioactive growth factor over 3 wk of exposure of mesangial cells to 30 mM D-glucose. Peptide inhibition of TGF-β1 activation by TSP-1 in high-glucose conditions completely suppressed increases in FN and PAI-1 expression. Treating mesangial cells maintained in high glucose with a TSP-1 antisense oligonucleotide reduced TSP-1 expression to levels found in 4 mM D-glucose cultures, prevented TGF-β1 activation, and normalized expression of FN.


Sign in / Sign up

Export Citation Format

Share Document