Adenosine transport in perfused rat kidney and renal cortical membrane vesicles

1984 ◽  
Vol 246 (6) ◽  
pp. F794-F803 ◽  
Author(s):  
M. E. Trimble ◽  
R. Coulson

Adenosine is a modulator of renal function but little is known about transport of this compound by renal tubular cells. Transport of exogenous adenosine was studied in isolated perfused rat kidney and in luminal (L) and antiluminal (AL) membrane vesicles isolated from rat renal cortex. Most experiments were performed in the presence of the adenosine deaminase inhibitor erythro-9-(2-hydroxy-3-nonyl)adenine. Kidneys were perfused in a recirculating system with Krebs-Henseleit bicarbonate buffer containing 6 g albumin/dl and adenosine. Net secretion of adenosine occurred at perfusate adenosine concentrations greater than 40 microM, and net reabsorption was seen at concentrations less than 40 microM. N6-(L-2-phenylisopropyl)adenosine (PIA), a nondeaminated adenosine receptor agonist, also showed net reabsorption when unbound PIA concentrations were 10-20 microM. Influx or efflux of [3H]adenosine in vesicles was measured using a rapid filtration technique. Transport into both L and AL vesicles was saturable. L vesicles demonstrated both high Km (43 +/- 4 microM) and low Km (4.4 +/- 0.6 microM) transport systems. Only a low Km (5 +/- 1 microM) system could be demonstrated in AL vesicles. Results indicate that at concentrations in the physiological range (less than 1 microM) adenosine undergoes mediated transport across both L and AL membranes and that net transport across the L membrane is in the direction of reabsorption.

2015 ◽  
Vol 59 (12) ◽  
pp. 7489-7496 ◽  
Author(s):  
Bo Yun ◽  
Mohammad A. K. Azad ◽  
Cameron J. Nowell ◽  
Roger L. Nation ◽  
Philip E. Thompson ◽  
...  

ABSTRACTPolymyxins are cyclic lipopeptide antibiotics that serve as a last line of defense against Gram-negative bacterial superbugs. However, the extensive accumulation of polymyxins in renal tubular cells can lead to nephrotoxicity, which is the major dose-limiting factor in clinical use. In order to gain further insights into the mechanism of polymyxin-induced nephrotoxicity, we have rationally designed novel fluorescent polymyxin probes to examine the localization of polymyxins in rat renal tubular (NRK-52E) cells. Our design strategy focused on incorporating a dansyl fluorophore at the hydrophobic centers of the polymyxin core structure. To this end, four novel regioselectively labeled monodansylated polymyxin B probes (MIPS-9541, MIPS-9542, MIPS-9543, and MIPS-9544) were designed, synthesized, and screened for their antimicrobial activities and apoptotic effects against rat kidney proximal tubular cells. On the basis of the assessment of antimicrobial activities, cellular uptake, and apoptotic effects on renal tubular cells, incorporation of a dansyl fluorophore at either position 6 or 7 (MIPS-9543 and MIPS-9544, respectively) of the polymyxin core structure appears to be an appropriate strategy for generating representative fluorescent polymyxin probes to be utilized in intracellular imaging and mechanistic studies. Furthermore, confocal imaging experiments utilizing these probes showed evidence of partial colocalization of the polymyxins with both the endoplasmic reticulum and mitochondria in rat renal tubular cells. Our results highlight the value of these new fluorescent polymyxin probes and provide further insights into the mechanism of polymyxin-induced nephrotoxicity.


2004 ◽  
Vol 91 (05) ◽  
pp. 927-934 ◽  
Author(s):  
Vivian Douros ◽  
Thomas Podor ◽  
Stephen Shaughnessy ◽  
Jeffrey Weitz ◽  
Edward Young

SummaryUnfractionated heparin (UFH) and low-molecular-weight heparin (LMWH) are cleared, at least in part, by the kidneys through a poorly understood process. This study was undertaken to explore the mechanism of renal clearance of these drugs. Rats were given fluorescein-5-isothiocyanate (FITC)-labeled UFH or LMWH intravenously. At intervals after injection, rats were euthanized and the kidneys were harvested and subjected to immunohistochemical analysis and fluorescence microscopy. Both UFH and LMWH were localized to renal tubular cells and no immunoperoxidase staining or fluorescence was detected in glomeruli. Autoradiography demonstrated similar intracellular distribution of radio-labeled UFH suggesting that this phenomenon is independent of the method used to label heparin. Fluoresence in the tubules increased as a function of time after UFH injection, but reached a plateau after LMWH injection suggesting that the rate of renal tubular uptake depends on the molecular size of the heparin. When administered prior to FITC-labeled UFH or LMWH, probenecid, a renal organic anion inhibitor, decreased the renal tubular uptake of the heparins, whereas cimetidine, a renal organic cation inhibitor, had no effect. These findings suggest that renal excretion of UFH and LMWH primarily reflects tubular uptake via an organic anion transport mechanism.


Toxicon ◽  
2019 ◽  
Vol 165 ◽  
pp. 40-46
Author(s):  
Mauren Villalta ◽  
Tiago Lima Sampaio ◽  
Ramon Róseo Paula Pessoa Bezerra de Menezes ◽  
Dânya Bandeira Lima ◽  
Antônio Rafael Coelho Jorge ◽  
...  

1990 ◽  
Vol 258 (6) ◽  
pp. F1497-F1503 ◽  
Author(s):  
J. E. Bourdeau ◽  
K. Lau

Studies of cortical proximal nephrons and plasma membrane vesicles suggest that a Ca-Na exchanger regulates intracellular Ca2+ concentration ([Ca2+]i) in renal tubular cells. We tested this hypothesis in isolated perfused rabbit connecting segments by measuring [Ca2+]i with fura-2. Within 2 min of replacing bath NaCl with mannitol, [Ca2+]i rose from a base line of approximately 100 nM to a peak of approximately 650 nM, then declined to a plateau of approximately 500 nM for approximately 5 min before rising to a second peak of approximately 600 nM. [Ca2+]i returned toward base line after restoring bath NaCl. Substitution of choline Cl or tetraethylammonium chloride for bath NaCl reproduced the rise in [Ca2+]i, implicating the Na+ as the mediator. Selective bath (but not lumen) Ca removal or lumen Na deletion virtually abolished these effects, suggesting that bath Na deletion causes peritubular Ca influx by a process that depends on lumen Na. Lumen Na removal lowered, whereas its repletion increased, [Ca2+]i. Smaller increments in [Ca2+]i were produced by raising lumen [Na] from 0 to 35-55 mM or from 20 to 120 mM, but not from 55 to 150 mM. Clamping bath [Ca] at approximately 100 nM abolished the rise in [Ca2+]i produced by lumen Na, corroborating the role of peritubular Ca. These results suggest a Ca influx across the basolateral membrane that is driven by a cell-to-bath [Na] gradient and that can be activated by changes in lumen [Na]. We propose that this process, in part, regulates [Ca2+]i in the rabbit connecting tubule.


1982 ◽  
Vol 243 (1) ◽  
pp. F29-F35
Author(s):  
S. Weinreb ◽  
K. A. Hruska ◽  
S. Klahr ◽  
M. R. Hammerman

After release of complete unilateral ureteral obstruction, a decreased fractional excretion of phosphate (Pi) is observed in the postobstructed kidney compared with the nonobstructed (control) kidney. To determine whether this decrease in the urinary excretion of Pi is due to changes in Na+-dependent Pi transport across the renal brush border membranes of postobstructed and control kidneys, membrane vesicles were prepared from the brush borders of kidneys from dogs that had undergone complete unilateral ureteral obstruction. Alkaline phosphatase activity was decreased in membrane vesicles isolated from postobstructed kidneys. No differences were observed in Na+-dependent Pi transport or in Na+ uptake in membrane vesicles isolated from postobstructed as compared with control kidneys. The in vivo administration of parathyroid hormone decreased Na+-dependent Pi transport in membrane vesicles isolated from postobstructed and control kidneys despite the absence of a phosphaturic response. Our findings suggest that no intrinsic change in the transport characteristics of Pi across the luminal membrane of renal tubular cells occurs with unilateral ureteral obstruction. The findings are consistent with the suggestion that the low fractional excretion of Pi in the postobstructed kidney results from very low filtered loads of Pi on the postobstructed side.


1985 ◽  
Vol 249 (5) ◽  
pp. E494-E497 ◽  
Author(s):  
R. M. Rosa ◽  
P. Silva ◽  
J. S. Stoff ◽  
F. H. Epstein

Vasoactive intestinal peptide, a polypeptide neurotransmitter, stimulates salt secretion by the mammalian intestine and the rectal gland of the dogfish shark. Because of the recent identification of vasoactive intestinal peptide in renal nerves, the present study was undertaken to investigate its effects on the isolated perfused rat kidney. The addition of vasoactive intestinal peptide to the recirculating perfusate produced a significant increase in urine volume, fractional excretion of sodium, chloride, and potassium, as well as osmolar clearance when compared with control kidneys. These changes associated with addition of vasoactive intestinal peptide occurred without any significant changes in perfusion flow, renal vascular resistance, or inulin clearance. These experiments strongly suggest an action of vasoactive intestinal peptide on renal tubular reabsorption.


1989 ◽  
Vol 256 (5) ◽  
pp. F901-F908
Author(s):  
K. A. Roby ◽  
S. Segal

Renal tubular reabsorption of cystine and lysine were studied in the isolated perfused rat kidney to bridge the gap between in vivo clearance studies, and in vitro transport studies of tubule fragments, cells, and brush-border membranes. Lysine was reabsorped by a saturable transport system shared by the dibasics. Cystine was also reabsorbed by a saturable transport system, which was shared in part by the dibasics (maximum inhibition 30%). The lysine threshold (Fmin) was 0.9 mumol.min-1.g-1, with a tubular maximum (TM) of 2.4 mumol.min-1.g-1. The cystine Fmin was 0.06 mumol.min-1.g-1; the TM could not be estimated because it was above the limit of cystine solubility. There was no evidence of cystine ,secretion.- The gamma-glutamyltransferase inhibitor, AT-125, decreased cystine excretion, but only in the presence of glutathione, glycine, glutamate, and the diabasic amino acids. This suggests that cystine from glutathione degradation at the brush border may contribute to urinary cystine (an explanation of the phenomenon of cystine secretion), but only under certain conditions.


1982 ◽  
Vol 156 (2) ◽  
pp. 372-384 ◽  
Author(s):  
C C Leung

A glycoprotein with an apparent 340,000 mol wt (gp 340K) was isolated from rat kidney saline-soluble extract by ammonium sulfate precipitation, DE 52 ion-exchange cellulose chromatography, concanavalin A affinity column, Sephacryl S-300 gel filtration, and discontinuous polyacrylamide gel electrophoresis (PAGE). The relative purity of gp 340K was examined by double immunodiffusion analysis, disc PAGE, and immunoelectrophoresis. Injection of rabbit gp 340K antiserum into pregnant rats during the organogenetic period induced abnormal embryonic development, fetal growth retardation, and embryonic death. Antiserum against the immunocomplexes isolated by immobilized protein A also produced the same embryotoxic effects. The biologic effects of the antisera appeared to be dose dependent. Defects such as anophthalmia, hydrocephaly, exencephaly, cleft palate, cleft lip, and some cardiovascular anomalies were observed. The most frequently observed anomaly was anophthalmia. Immunofluorescent localization studies indicated that gp 340K antibodies localized in vivo in the visceral yolk-sac endodermal cells and the embryonic endoderm. In vitro immunofluorescent localization studies revealed that gp 340K was a component of the renal tubular cells that cross-reacted with antigen in the visceral yolk-sac endodermal cells and embryonic endoderm. The underlying mechanism whereby gp 340K antibodies induce birth defects is not known. Three hypotheses were discussed.


1990 ◽  
Vol 259 (3) ◽  
pp. G504-G510 ◽  
Author(s):  
S. L. Betcher ◽  
J. N. Forrest ◽  
R. G. Knickelbein ◽  
J. W. Dobbins

To determine the mechanism(s) of transcellular adenosine transport in epithelial tissues that possess an adenosine receptor response, we studied [3H]adenosine uptake using vesicles prepared from isolated brush-border and basolateral membranes of the rabbit ileum. In the presence of the adenosine deaminase inhibitor deoxycoformycin uptake of [3H]adenosine into brush-border membrane vesicles is stimulated fivefold by an inwardly directed Na gradient. Na-dependent [3H]adenosine uptake is enhanced and concentrative under conditions that increase inside negativity of vesicles, thus providing evidence for an electrogenic carrier. Na-dependent adenosine uptake is a saturable function of adenosine concentration with a Michaelis-Menten constant of 17.3 +/- 7.1 microM and maximum transport rate of 216.9 +/- 20.2 pmol.min-1.mg protein-1. Both uridine and inosine inhibit [3H]adenosine uptake, suggesting that the Na-dependent transporter has broad substrate specificity for both purine and pyrimidine ribonucleosides. Na-dependent adenosine uptake is inhibited by dipyridamole but is insensitive to 6-(4-nitrobenzyl)thio-9-beta-D-ribofuranosylpurine. We conclude that adenosine is transported across ileal brush-border membranes by a Na-ribonucleoside cotransport system. In contrast, adenosine uptake in basolateral membranes is not stimulated by a Na gradient. These studies show asymmetry in the distribution of transport systems for adenosine in polarized intestinal epithelia.


Sign in / Sign up

Export Citation Format

Share Document