Ca2+ channels mediate protein tyrosine kinase activation by endothelin-1

1996 ◽  
Vol 270 (5) ◽  
pp. F790-F797 ◽  
Author(s):  
M. S. Simonson ◽  
Y. Wang ◽  
W. H. Herman

To investigate the novel interaction between endothelin-1 (ET-1) and cellular protein tyrosine kinases (PTK), we asked whether Ca2+ influx links ET-1 receptors to PTK activation. In glomerular mesangial cells, ET-1 stimulated a biphasic increase in PTK activity in anti-phosphotyrosine immunoprecipitates that temporally correlated with increased tyrosine phosphorylation of cellular proteins. ET-1 increased tyrosine phosphorylation of proteins in the cytosol and in a puncture distribution consistent with focal adhesions. Addition of ionomycin to increase Ca2+ influx stimulated PTK activity, and inhibition of extracellular Ca2+ influx blocked PTK activation by ET-1. ET-1 increased autophosphorylation of pp60c-src, which was mimicked by addition of ionomycin and inhibited by chelation of extracellular Ca2+. In addition, a selective PTK inhibitor blocked induction of c-fos mRNA by ionomycin, suggesting that Ca(2+)-stimulated PTKs contribute to a signaling pathway regulating immediate early gene expression. Taken together, these results demonstrate that ET-1 stimulates nonreceptor PTK activity, including pp60c-src, by activating Ca2+ channels and subsequent influx of extracellular Ca2+.

1995 ◽  
Vol 6 (5) ◽  
pp. 1504-1510
Author(s):  
M Haneda ◽  
R Kikkawa ◽  
D Koya ◽  
T Shikano ◽  
T Sugimoto ◽  
...  

Endothelin-1 (ET-1) is known to induce the contraction and proliferation of glomerular mesangial cells. Because ET-1 was found to stimulate the tyrosine phosphorylation of unidentified cellular proteins in cultured mesangial cells, protein tyrosine kinase might serve as one of the important signals leading to various functions of ET-1. Focal adhesion kinase (p125FAK) is a newly identified cytoplasmic protein tyrosine kinase that is activated by the phosphorylation of its own tyrosine residue. Because p125FAK was found to play a role in the signal transduction of not only integrins but also various neurotransmitters, including bombesin, endothelin, and vasopressin in Swiss 3T3 cells and Rat-1 fibroblasts, whether ET-1 could stimulate the tyrosine phosphorylation of p125FAK in glomerular mesangial cells was examined. ET-1 stimulated the tyrosine phosphorylation of p125FAK by threefold to fourfold in cultured mesangial cells. This effect of ET-1 was detected at 1 min and reached a maximum within 5 min and was blocked by BQ-123, an antagonist for ETA receptor. A23187, a calcium ionophore, failed to stimulate the tyrosine phosphorylation of p125FAK, and ET-1 was able to stimulate the tyrosine phosphorylation of p125FAK, even in a calcium-free medium. The activation of protein kinase C (PKC) by phorbol 12, 13-dibutyrate resulted in a stimulation of the tyrosine phosphorylation of p125FAK, and an inhibition of PKC by calphostin C or staurosporine significantly reduced the effect of ET-1. Furthermore, prolonged treatment of the cells with phorbol 12, 13-dibutyrate markedly inhibited the ET-1-induced tyrosine phosphorylation of p125FAK. These results indicate that p125FAK might play a role in a signal transduction system of ET-1 in glomerular mesangial cells and that the ET-1-induced tyrosine phosphorylation of p125FAK is largely dependent on the PKC pathway.


1996 ◽  
Vol 271 (5) ◽  
pp. F994-F1003 ◽  
Author(s):  
H. Ma ◽  
H. Matsunaga ◽  
B. Li ◽  
M. B. Marrero ◽  
B. N. Ling

Platelet-derived growth factor (PDGF)-induced Ca2+ signaling mechanisms were examined in cultured rat glomerular mesangial cells. PDGF-BB stimulated the tyrosine phosphorylation of phospholipase C (PLC)-gamma 1, the formation of a PLC-gamma 1/PDGF-beta receptor membrane complex, and the generation of intracellular inositol 1,4,5-trisphosphate (IP3). Preincubation with a tyrosine kinase inhibitor (genistein) abolished these PDGF-induced responses. Activation of 1-pS Ca2+ channels in cell-attached patches by intrapipette PDGF-BB was also abolished by tyrosine kinase inhibition. In the absence of PDGF-BB, channels were activated in cell-attached patches exposed to intrapipette thapsigargin (IP3-independent releaser of intracellular Ca2+ stores) and in excised inside-out patches exposed to increasing “cytoplasmic” Ca2+ (10(-8) to 10(-6) M). In cell-attached patches, channel activation by PDGF-BB was abolished when extracellular Ca2+ was < 1 mM. In glomerular mesangial cells 1) PDGF-BB stimulates tyrosine phosphorylation of PLC-gamma 1, PDGF-beta receptor/PLC-gamma 1 membrane complex formation, IP3 production, and 1-pS Ca2+ channel activity; 2) all four PDGF-induced responses are abolished by tyrosine kinase inhibition; 3) PDGF receptor-operated Ca2+ channels are sensitive to both intra- and extracellular Ca2+.


2009 ◽  
Vol 297 (1) ◽  
pp. C133-C139 ◽  
Author(s):  
Shirley C. Chen ◽  
Ranvikram S. Khanna ◽  
Darrell C. Bessette ◽  
Lionel A. Samayawardhena ◽  
Catherine J. Pallen

Protein tyrosine phosphatase-α (PTPα) is a widely expressed receptor-type phosphatase that functions in multiple signaling systems. The actions of PTPα can be regulated by its phosphorylation on serine and tyrosine residues, although little is known about the conditions that promote PTPα phosphorylation. In this study, we tested the ability of several extracellular factors to stimulate PTPα tyrosine phosphorylation. The growth factors IGF-I and acidic FGF induced the highest increase in PTPα phosphorylation at tyrosine 789, followed by PMA and lysophosphatidic acid, while EGF had little effect. Further investigation of IGF-I-induced PTPα tyrosine phosphorylation demonstrated that this occurs through a novel Src family kinase-independent mechanism that does not require focal adhesion kinase, phosphatidylinositol 3-kinase, or MEK. We also show that PTPα physically interacts with the IGF-I receptor. In contrast to IGF-I-induced PTPα phosphorylation, this association does not require IGF-I. The interaction of PTPα and the IGF-I receptor is independent of PTPα catalytic activity, and expression of exogenous PTPα does not promote IGF-I receptor tyrosine dephosphorylation, indicating that PTPα does not act as an IGF-I receptor phosphatase. However, PTPα mediates IGF-I signaling, because IGF-I-stimulated fibroblast migration was reduced by ∼50% in cells lacking PTPα or in cells with mutant PTPα lacking the tyrosine 789 phosphorylation site. Our results suggest that PTPα tyrosine phosphorylation can occur in response to diverse stimuli and can be mediated by various tyrosine kinases. In the case of IGF-I, we propose that IGF-I-induced tyrosine 789 phosphorylation of PTPα, possibly catalyzed by the PTPα-associated IGF-I receptor tyrosine kinase, is required for efficient cell migration in response to this growth factor.


1992 ◽  
Vol 12 (10) ◽  
pp. 4706-4713
Author(s):  
H Sabe ◽  
M Okada ◽  
H Nakagawa ◽  
H Hanafusa

The protein product of the CT10 virus, p47gag-crk (v-Crk), which contains Src homology region 2 (SH2) and 3 (SH3) domains but lacks a kinase domain, is believed to cause an increase in cellular protein tyrosine phosphorylation. A candidate tyrosine kinase, Csk (C-terminal Src kinase), has been implicated in c-Src Tyr-527 phosphorylation, which negatively regulates the protein tyrosine kinase of pp60c-src (c-Src). To investigate how c-Src kinase activity is regulated in vivo, we first looked at whether v-Crk can activate c-Src kinase. We found that cooverexpression of v-Crk and c-Src caused elevation of c-Src kinase activity, resulting in an increase of tyrosine phosphorylation of cellular proteins and morphological transformation of rat 3Y1 fibroblasts. v-Crk and c-Src complexes were not detected, although v-Crk bound to a variety of tyrosine-phosphorylated proteins in cells overexpressing v-Crk and c-Src. Overexpression of Csk in these transformed cells caused reversion to normal phenotypes and also reduced the level of c-Src kinase activity. However, Csk did not cause reversion of cells transformed by v-Src or c-Src527F, in which Tyr-527 was changed to Phe. These results strongly suggest that Csk acts on Tyr-527 of c-Src and suppresses c-Src kinase activity in vivo. Because Csk can suppress transformation by cooverexpression of v-Crk and c-Src, we suggest that v-Crk causes activation of c-Src in vivo by altering the phosphorylation state of Tyr-527.


1993 ◽  
Vol 13 (2) ◽  
pp. 785-791
Author(s):  
M D Schaller ◽  
C A Borgman ◽  
J T Parsons

Integrins play a central role in cellular adhesion and anchorage of the cytoskeleton and participate in the generation of intracellular signals, including tyrosine phosphorylation. We have recently isolated a cDNA encoding a unique, focal adhesion-associated protein tyrosine kinase (FAK) that is a component of an integrin-mediated signal transduction pathway. Here we report the isolation of cDNAs encoding the C-terminal, noncatalytic domain of the FAK kinase, termed FRNK (FAK-related nonkinase). Both the FAK- and FRNK-encoded polypeptides, pp125FAK and p41/p43FRNK, are expressed in normal chicken embryo cells. pp125FAK and p41/p43FRNK were localized to focal adhesions, suggesting that pp125FAK is directed to the focal adhesions by sequences within its C-terminal domain. We also show that the fibronectin-dependent increase in tyrosine phosphorylation of pp125FAK is accompanied by a concomitant posttranslational modification of p41FRNK.


1999 ◽  
Vol 113 (1) ◽  
pp. 45-56 ◽  
Author(s):  
Elena Molokanova ◽  
Alexei Savchenko ◽  
Richard H. Kramer

Rod photoreceptor cyclic nucleotide–gated (CNG) channels are modulated by tyrosine phosphorylation. Rod CNG channels expressed in Xenopus oocytes are associated with constitutively active protein tyrosine kinases (PTKs) and protein tyrosine phosphatases that decrease and increase, respectively, the apparent affinity of the channels for cGMP. Here, we examine the effects of genistein, a competitive inhibitor of the ATP binding site, on PTKs. Like other PTK inhibitors (lavendustin A and erbstatin), cytoplasmic application of genistein prevents changes in the cGMP sensitivity that are attributable to tyrosine phosphorylation of the CNG channels. However, unlike these other inhibitors, genistein also slows the activation kinetics and reduces the maximal current through CNG channels at saturating cGMP. These effects occur in the absence of ATP, indicating that they do not involve inhibition of a phosphorylation event, but rather involve an allosteric effect of genistein on CNG channel gating. This could result from direct binding of genistein to the channel; however, the time course of inhibition is surprisingly slow (&gt;30 s), raising the possibility that genistein exerts its effects indirectly. In support of this hypothesis, we find that ligands that selectively bind to PTKs without directly binding to the CNG channel can nonetheless decrease the effect of genistein. Thus, ATP and a nonhydrolyzable ATP derivative competitively inhibit the effect of genistein on the channel. Moreover, erbstatin, an inhibitor of PTKs, can noncompetitively inhibit the effect of genistein. Taken together, these results suggest that in addition to inhibiting tyrosine phosphorylation of the rod CNG channel catalyzed by PTKs, genistein triggers a noncatalytic interaction between the PTK and the channel that allosterically inhibits gating.


1987 ◽  
Vol 7 (2) ◽  
pp. 905-913
Author(s):  
W Yonemoto ◽  
A J Filson ◽  
A E Queral-Lustig ◽  
J Y Wang ◽  
J S Brugge

Cells transformed with the middle tumor antigen (mT) of polyomavirus were treated with sodium orthovanadate (Na3VO4), an inhibitor of phosphotyrosine phosphatases, to enhance for the detection of cellular proteins which are phosphorylated on tyrosine. Na3VO4 treatment of mT-transformed rat F1-11 cells resulted in a 16-fold elevation in the level of phosphotyrosine associated with total cellular proteins. Parental F1-11 cells displayed only a twofold increase in phosphotyrosine following Na3VO4 treatment. The abundance of phosphotyrosine in Na3VO4-treated mT-transformed F1-11 cells was twofold higher than in untreated Rous sarcoma virus (RSV)-transformed F1-11 cells and 3.5-fold lower than in Na3VO4-treated RSV-transformed F1-11 cells. Tyrosine phosphorylation of many cellular proteins, including p36, the major substrate of the RSV pp60v-src protein, was detected in Na3VO4-treated mT-transformed F1-11 cells at levels comparable to those observed in RSV-transformed cells. Some of the major protein species recognized by antiphosphotyrosine antibodies in Na3VO4-treated mT-transformed cells displayed electrophoretic mobilities similar to those detected in RSV-transformed F1-11 cells. Tyrosine phosphorylation of p36 was also detected in fibroblasts infected with polyomavirus. There was no detectable difference in the kinase activity of pp60c-src:mT extracted from untreated and Na3VO4-treated mT-transformed cells; however, Na3VO4 treatment of F1-11 and mT-transformed F1-11 cells was shown to inhibit the activity of phosphotyrosine phosphatases in a crude assay of total cellular activity with pp60v-src as the substrate. Thus, Na3VO4 treatment may allow the detection of phosphotyrosine-containing proteins in mT-transformed cells by preventing the turnover of phosphate on substrates phosphorylated by activated cellular protein-tyrosine kinases associated with mT. These results suggest that tyrosine phosphorylation of cellular proteins may be involved in the events that are responsible for mT-induced cellular transformation.


1994 ◽  
Vol 267 (4) ◽  
pp. F528-F536 ◽  
Author(s):  
G. Grandaliano ◽  
G. G. Choudhury ◽  
P. Biswas ◽  
H. E. Abboud

Thrombin elicits multiple biological effects on a variety of cells. We have previously shown that thrombin is a potent mitogen for human glomerular mesangial cells. This mitogenic effect of thrombin is associated with activation of phospholipase C (PLC) and induction of platelet-derived growth factor (PDGF) gene expression. The thrombin receptor, which belongs to the guanine nucleotide binding protein (G protein)-coupled receptor family, has recently been shown to induce rapid tyrosine phosphorylation of cellular proteins. In the present study, we investigated the role of protein-tyrosine phosphorylation in mediating the cellular responses elicited by thrombin in human glomerular mesangial cells. Amino acid labeling followed by immunoprecipitation with phosphotyrosine antibodies demonstrate that thrombin stimulates tyrosine phosphorylation of a set of cellular proteins. Treatment of mesangial cells with thrombin followed by immunoblotting with phosphotyrosine antibodies showed three major bands of tyrosine-phosphorylated proteins approximately 130, 70, and 44-42 kDa. Phosphorylation of these proteins was inhibited by two tyrosine kinase inhibitors, herbimycin A and genistein. Both compounds inhibited DNA synthesis and PDGF B-chain gene expression but had no effect on inositol phosphates production or increases in cytosolic calcium in response to thrombin. These data demonstrate that protein-tyrosine phosphorylation is not required for thrombin-induced PLC activation with inositol phosphate formation and subsequent intracellular calcium release, but it is an absolute requirement for thrombin-induced DNA synthesis and PDGF B-chain gene expression.


Sign in / Sign up

Export Citation Format

Share Document