scholarly journals Endothelin-1 stimulates tyrosine phosphorylation of p125 focal adhesion kinase in mesangial cells.

1995 ◽  
Vol 6 (5) ◽  
pp. 1504-1510
Author(s):  
M Haneda ◽  
R Kikkawa ◽  
D Koya ◽  
T Shikano ◽  
T Sugimoto ◽  
...  

Endothelin-1 (ET-1) is known to induce the contraction and proliferation of glomerular mesangial cells. Because ET-1 was found to stimulate the tyrosine phosphorylation of unidentified cellular proteins in cultured mesangial cells, protein tyrosine kinase might serve as one of the important signals leading to various functions of ET-1. Focal adhesion kinase (p125FAK) is a newly identified cytoplasmic protein tyrosine kinase that is activated by the phosphorylation of its own tyrosine residue. Because p125FAK was found to play a role in the signal transduction of not only integrins but also various neurotransmitters, including bombesin, endothelin, and vasopressin in Swiss 3T3 cells and Rat-1 fibroblasts, whether ET-1 could stimulate the tyrosine phosphorylation of p125FAK in glomerular mesangial cells was examined. ET-1 stimulated the tyrosine phosphorylation of p125FAK by threefold to fourfold in cultured mesangial cells. This effect of ET-1 was detected at 1 min and reached a maximum within 5 min and was blocked by BQ-123, an antagonist for ETA receptor. A23187, a calcium ionophore, failed to stimulate the tyrosine phosphorylation of p125FAK, and ET-1 was able to stimulate the tyrosine phosphorylation of p125FAK, even in a calcium-free medium. The activation of protein kinase C (PKC) by phorbol 12, 13-dibutyrate resulted in a stimulation of the tyrosine phosphorylation of p125FAK, and an inhibition of PKC by calphostin C or staurosporine significantly reduced the effect of ET-1. Furthermore, prolonged treatment of the cells with phorbol 12, 13-dibutyrate markedly inhibited the ET-1-induced tyrosine phosphorylation of p125FAK. These results indicate that p125FAK might play a role in a signal transduction system of ET-1 in glomerular mesangial cells and that the ET-1-induced tyrosine phosphorylation of p125FAK is largely dependent on the PKC pathway.

1993 ◽  
Vol 13 (2) ◽  
pp. 785-791
Author(s):  
M D Schaller ◽  
C A Borgman ◽  
J T Parsons

Integrins play a central role in cellular adhesion and anchorage of the cytoskeleton and participate in the generation of intracellular signals, including tyrosine phosphorylation. We have recently isolated a cDNA encoding a unique, focal adhesion-associated protein tyrosine kinase (FAK) that is a component of an integrin-mediated signal transduction pathway. Here we report the isolation of cDNAs encoding the C-terminal, noncatalytic domain of the FAK kinase, termed FRNK (FAK-related nonkinase). Both the FAK- and FRNK-encoded polypeptides, pp125FAK and p41/p43FRNK, are expressed in normal chicken embryo cells. pp125FAK and p41/p43FRNK were localized to focal adhesions, suggesting that pp125FAK is directed to the focal adhesions by sequences within its C-terminal domain. We also show that the fibronectin-dependent increase in tyrosine phosphorylation of pp125FAK is accompanied by a concomitant posttranslational modification of p41FRNK.


1996 ◽  
Vol 270 (5) ◽  
pp. F790-F797 ◽  
Author(s):  
M. S. Simonson ◽  
Y. Wang ◽  
W. H. Herman

To investigate the novel interaction between endothelin-1 (ET-1) and cellular protein tyrosine kinases (PTK), we asked whether Ca2+ influx links ET-1 receptors to PTK activation. In glomerular mesangial cells, ET-1 stimulated a biphasic increase in PTK activity in anti-phosphotyrosine immunoprecipitates that temporally correlated with increased tyrosine phosphorylation of cellular proteins. ET-1 increased tyrosine phosphorylation of proteins in the cytosol and in a puncture distribution consistent with focal adhesions. Addition of ionomycin to increase Ca2+ influx stimulated PTK activity, and inhibition of extracellular Ca2+ influx blocked PTK activation by ET-1. ET-1 increased autophosphorylation of pp60c-src, which was mimicked by addition of ionomycin and inhibited by chelation of extracellular Ca2+. In addition, a selective PTK inhibitor blocked induction of c-fos mRNA by ionomycin, suggesting that Ca(2+)-stimulated PTKs contribute to a signaling pathway regulating immediate early gene expression. Taken together, these results demonstrate that ET-1 stimulates nonreceptor PTK activity, including pp60c-src, by activating Ca2+ channels and subsequent influx of extracellular Ca2+.


1995 ◽  
Vol 270 (36) ◽  
pp. 21206-21219 ◽  
Author(s):  
Hiroko Sasaki ◽  
Kazuko Nagura ◽  
Masaho Ishino ◽  
Hirotoshi Tobioka ◽  
Kiyoshi Kotani ◽  
...  

Blood ◽  
1990 ◽  
Vol 76 (4) ◽  
pp. 706-715 ◽  
Author(s):  
Y Kanakura ◽  
B Druker ◽  
SA Cannistra ◽  
Y Furukawa ◽  
Y Torimoto ◽  
...  

Human granulocyte-macrophage colony-stimulating factor (GM-CSF) and interleukin-3 (IL-3) exert multiple effects on the proliferation, differentiation, and function of myeloid lineage cells through their interaction with specific cell-surface receptors. There is a considerable degree of overlap in the biological effects of these two growth factors, but little is known about the mechanisms of postreceptor signal transduction. We have investigated the effects of GM-CSF and IL-3 on protein tyrosine-kinase activity in a human cell line, MO7E, which proliferates in response to either factor. Tyrosine- kinase activity was detected using immunoblotting with a monoclonal antibody (MoAb) specific for phosphotyrosine. GM-CSF and IL-3 were found to induce a nearly identical pattern of protein tyrosine phosphorylation using both one- and two-dimensional gel electrophoresis. Tyrosine phosphorylation of two cytosolic proteins in particular was increased more than 10-fold, a 93-Kd protein (pp93) and a 70-Kd protein (pp70). Tyrosine phosphorylation of pp93 and pp70 was observed within 1 minute, reached a maximum at 5 to 15 minutes, and gradually decreased thereafter. Other proteins of 150, 125, 63, 55, 42, and 36 Kd were also phosphorylated on tyrosine in response to both GM- CSF and IL-3, although to a lesser degree. Tyrosine phosphorylation was dependent on the concentration of GM-CSF over the range of 0.1 to 10 ng/mL and on IL-3 over the range of 1 to 30 ng/mL. Stimulation of MO7E cells with 12–0-tetradecanoyl-phorbol-13-acetate (TPA) or cytokines such as G-CSF, M-CSF, interleukin-1 (IL-1), interleukin-4 (IL-4), interleukin-6 (IL-6), interferon gamma, tumor necrosis factor (TNF), or transforming growth factor-beta (TGF-beta) did not induce tyrosine phosphorylation of pp93 or pp70, suggesting that these two phosphoproteins are specific for GM-CSF-or IL-3-induced activation. The extent and duration of phosphorylation of all the substrates were increased by pretreatment of cells with vanadate, an inhibitor of protein-tyrosine phosphatases. Importantly, culture of MO7E cells with vanadate (up to 10 mumol/L) resulted in a dose-dependent increase in GM- CSF-or IL-3-induced proliferation of up to 1.8-fold. These results suggest that tyrosine phosphorylation may be important for GM-CSF and IL-3 receptor-mediated signal transduction and that cell proliferation may be, at least partially, regulated by a balance between CSF-induced protein-tyrosine kinase activity and protein-tyrosine phosphatase activity.


1993 ◽  
Vol 13 (2) ◽  
pp. 785-791 ◽  
Author(s):  
M D Schaller ◽  
C A Borgman ◽  
J T Parsons

Integrins play a central role in cellular adhesion and anchorage of the cytoskeleton and participate in the generation of intracellular signals, including tyrosine phosphorylation. We have recently isolated a cDNA encoding a unique, focal adhesion-associated protein tyrosine kinase (FAK) that is a component of an integrin-mediated signal transduction pathway. Here we report the isolation of cDNAs encoding the C-terminal, noncatalytic domain of the FAK kinase, termed FRNK (FAK-related nonkinase). Both the FAK- and FRNK-encoded polypeptides, pp125FAK and p41/p43FRNK, are expressed in normal chicken embryo cells. pp125FAK and p41/p43FRNK were localized to focal adhesions, suggesting that pp125FAK is directed to the focal adhesions by sequences within its C-terminal domain. We also show that the fibronectin-dependent increase in tyrosine phosphorylation of pp125FAK is accompanied by a concomitant posttranslational modification of p41FRNK.


Oncogene ◽  
2012 ◽  
Vol 32 (36) ◽  
pp. 4304-4312 ◽  
Author(s):  
Y Zheng ◽  
J Gierut ◽  
Z Wang ◽  
J Miao ◽  
J M Asara ◽  
...  

Blood ◽  
1990 ◽  
Vol 76 (4) ◽  
pp. 706-715 ◽  
Author(s):  
Y Kanakura ◽  
B Druker ◽  
SA Cannistra ◽  
Y Furukawa ◽  
Y Torimoto ◽  
...  

Abstract Human granulocyte-macrophage colony-stimulating factor (GM-CSF) and interleukin-3 (IL-3) exert multiple effects on the proliferation, differentiation, and function of myeloid lineage cells through their interaction with specific cell-surface receptors. There is a considerable degree of overlap in the biological effects of these two growth factors, but little is known about the mechanisms of postreceptor signal transduction. We have investigated the effects of GM-CSF and IL-3 on protein tyrosine-kinase activity in a human cell line, MO7E, which proliferates in response to either factor. Tyrosine- kinase activity was detected using immunoblotting with a monoclonal antibody (MoAb) specific for phosphotyrosine. GM-CSF and IL-3 were found to induce a nearly identical pattern of protein tyrosine phosphorylation using both one- and two-dimensional gel electrophoresis. Tyrosine phosphorylation of two cytosolic proteins in particular was increased more than 10-fold, a 93-Kd protein (pp93) and a 70-Kd protein (pp70). Tyrosine phosphorylation of pp93 and pp70 was observed within 1 minute, reached a maximum at 5 to 15 minutes, and gradually decreased thereafter. Other proteins of 150, 125, 63, 55, 42, and 36 Kd were also phosphorylated on tyrosine in response to both GM- CSF and IL-3, although to a lesser degree. Tyrosine phosphorylation was dependent on the concentration of GM-CSF over the range of 0.1 to 10 ng/mL and on IL-3 over the range of 1 to 30 ng/mL. Stimulation of MO7E cells with 12–0-tetradecanoyl-phorbol-13-acetate (TPA) or cytokines such as G-CSF, M-CSF, interleukin-1 (IL-1), interleukin-4 (IL-4), interleukin-6 (IL-6), interferon gamma, tumor necrosis factor (TNF), or transforming growth factor-beta (TGF-beta) did not induce tyrosine phosphorylation of pp93 or pp70, suggesting that these two phosphoproteins are specific for GM-CSF-or IL-3-induced activation. The extent and duration of phosphorylation of all the substrates were increased by pretreatment of cells with vanadate, an inhibitor of protein-tyrosine phosphatases. Importantly, culture of MO7E cells with vanadate (up to 10 mumol/L) resulted in a dose-dependent increase in GM- CSF-or IL-3-induced proliferation of up to 1.8-fold. These results suggest that tyrosine phosphorylation may be important for GM-CSF and IL-3 receptor-mediated signal transduction and that cell proliferation may be, at least partially, regulated by a balance between CSF-induced protein-tyrosine kinase activity and protein-tyrosine phosphatase activity.


Sign in / Sign up

Export Citation Format

Share Document