Chloride currents in primary cultures of rabbit proximal and distal convoluted tubules

1998 ◽  
Vol 275 (5) ◽  
pp. F651-F663 ◽  
Author(s):  
Isabelle Rubera ◽  
Michel Tauc ◽  
Michel Bidet ◽  
Chantal Poujeol ◽  
Béatrice Cuiller ◽  
...  

Cl− conductances were studied in cultured rabbit proximal convoluted tubule (PCT) epithelial cells and compared with those measured in cultured distal bright convoluted tubule (DCTb) epithelial cells. Using the whole cell patch-clamp technique, three types of Cl− conductances were identified in DCTb cultured cells. These consisted of volume-sensitive, Ca2+-activated, and forskolin-activated Cl−currents. In PCT cultured cells, only volume-sensitive and Ca2+-activated Cl− currents were recorded. The characteristics of Ca2+-activated currents in PCT cells closely resembled those in DCTb cells. Volume-sensitive Cl− currents could be elicited both in PCT and in DCTb cells by hypotonic stress. The pharmacological profile of this conductance was established for both cell types. Forskolin activated a linear Cl− current in DCTb cells but not in PCT cells. This conductance was insensitive to DIDS and corresponds to cystic fibrosis transmembrane conductance regulator (CFTR)-like channels. Quantitative measurements of SPQ fluorescence showed that only the apical membrane of DCTb cells possessed a Cl− pathway that was sensitive to forskolin. RT-PCR experiments showed the presence of CFTR mRNA in both cultures, whereas immunostaining experiments revealed the expression of CFTR in DCTb cells only. The physiological role of the different types of channels is discussed.

1996 ◽  
Vol 271 (3) ◽  
pp. F552-F559 ◽  
Author(s):  
K. A. Volk ◽  
C. Zhang ◽  
R. F. Husted ◽  
J. B. Stokes

The hypertonic environment of the renal medulla can change rapidly according to the state of hydration of the animal. We used primary cultures of rat inner medullary collecting duct (IMCD) cells to investigate the characteristics of Cl- currents activated by an acute reduction in osmolarity (ICl(osm)). Using the whole cell patch-clamp technique, we identified an outwardly rectifying current that decayed slowly at strongly depolarizing voltages. The onset of ICl(osm) began 6.7 min after the fall in bath osmolarity, a delay longer than reported in other cell types. Hypotonicity did not induce an increase in intracellular Ca2+ concentration, and activation of ICl(osm) did not require the presence of Ca2+. Intracellular ATP was needed to evoke ICl(osm) when the hypotonic stimulus was modest (50 mosmol/l or less) but was not necessary when the stimulus was stronger (100 mosmol/ l). ICl(osm) was inhibited by 5-nitro-2-(3-phenylpropylamino)benzoic acid but not by tamoxifen or glibenclamide. 4,4'-Diisothiocyanostilbene-2,2'-disulfonic acid produced a voltage-dependent block. Acute reduction in osmolarity using cells grown on filters did not induce a Cl- secretory current. The ICl(osm) of IMCD cells appears to be on the basolateral membrane and displays some unique features.


1993 ◽  
Vol 264 (2) ◽  
pp. L107-L115 ◽  
Author(s):  
X. J. Yuan ◽  
W. F. Goldman ◽  
M. L. Tod ◽  
L. J. Rubin ◽  
M. P. Blaustein

The electrophysiological properties of cultured single vascular smooth muscle (VSM) cells from rat pulmonary (PA) and mesenteric (MA) arteries were studied using the whole cell patch-clamp technique. Cells were studied at 3–7 days as primary cultures, or were replated after 10–20 days and subcultured for 2–5 days. In the standard physiological bath solution (containing 1.8 mM Ca2+), and with 125 mM K+ + 10 mM ethylene glycol-bis(beta-aminoethyl ether)- N,N,N',N'-tetraacetic acid (EGTA)-filled pipettes, both PA and MA primary cultured cells had high input resistances (mean = 2-3 G omega) and resting membrane potentials of about -40 mV. The cells were clamped at a holding potential of -70 mV. Depolarization to -20 mV or more evoked a transient inward current (Iin) that was eliminated in Ca(2+)-free bath solution; this indicates that Iin was carried by Ca2+. Iin was substantially smaller in subcultured cells from both PA and MA. Depolarization also activated three components of outward current (Iout) in primary cultured PA and MA cells: a rapidly inactivating transient component (Irt), a slowly inactivating transient component (Ist), and a steady-state (noninactivating) component (Iss). All three components of Iout were inhibited to varying degrees by 5 mM 4-aminopyridine and were eliminated by replacing intracellular K+ with Cs+, but were only minimally affected by removal of extracellular Ca2+. These results suggest that this Iout was carried by K+ and was voltage gated. Little external Ca(2+)-dependent Iout was observed under these conditions, but a substantial Ca(2+)-dependent component was seen when the EGTA concentration in the pipettes was reduced to 0.1 mM.(ABSTRACT TRUNCATED AT 250 WORDS)


1988 ◽  
Vol 90 (1) ◽  
pp. 73-77
Author(s):  
A. Harris ◽  
L. Coleman

The establishment of a tissue-culture system for epithelial cells derived from human foetal pancreas has recently been reported. Further analyses have now been made on these cells in vitro, together with parallel investigation of the distribution of different cell types within the intact foetal pancreas. Results support the view that the cultured cells are ductal in origin and nature. Pancreatic epithelial cell cultures have also been established from foetuses with cystic fibrosis.


1993 ◽  
Vol 104 (4) ◽  
pp. 1155-1162
Author(s):  
R. Alemany ◽  
M.R. Vila ◽  
C. Franci ◽  
G. Egea ◽  
F.X. Real ◽  
...  

Melanotransferrin (p97) is an iron-binding membrane glycoprotein with 40% homology to transferrin and lactoferrin. It was first identified on the basis of its high level of expression in melanoma cells, as compared to normal melanocytes. It is also present in many cultured cell types. In normal tissues, p97 is expressed in fetal intestine, umbilical cord, sweat gland ducts and liver sinusoidal lining cells. Kinetic studies in melanoma cells have suggested that p97 plays a role in iron metabolism. We have examined expression of p97 in cell lines derived from human colorectal carcinomas which express a differentiated phenotype. When polarized, these cells showed a preferred apical distribution of p97, as demonstrated by immunohistochemistry, immune electron microscopy and domain-selective biotinylation. Correspondingly, p97 was only found on the apical brush border of epithelial cells in the fetal intestine. p97 was shown to be anchored to the membrane through a glycosyl phosphatidylinositol moiety by treatment with phophatidylinositol-specific phospholipase C (PI-PLC) and labeling with [14C]ethanolamine. These observations provide a basis for the elucidation of the physiological role of p97 in iron metabolism and its possible role in cell proliferation and malignant cell transformation.


1996 ◽  
Vol 134 (3) ◽  
pp. 731-746 ◽  
Author(s):  
N K Haass ◽  
M A Kartenbeck ◽  
R E Leube

Certain properties of the highly specialized synaptic transmitter vesicles are shared by constitutively occurring vesicles. We and others have thus identified a cDNA in various nonneuroendocrine cell types of rat and human that is related to synaptophysin, one of the major synaptic vesicle membrane proteins, which we termed pantophysin. Here we characterize the gene structure, mRNA and protein expression, and intracellular distribution of pantophysin. Its mRNA is detected in murine cell types of nonneuroendocrine as well as of neuroendocrine origin. The intron/exon structure of the murine pantophysin gene is identical to that of synaptophysin except for the last intron that is absent in pantophysin. The encoded polypeptide of calculated mol wt 28,926 shares many sequence features with synaptophysin, most notably the four hydrophobic putative transmembrane domains, although the cytoplasmic end domains are completely different. Using antibodies against the unique carboxy terminus pantophysin can be detected by immunofluorescence microscopy in both exocrine and endocrine cells of human pancreas, and in cultured cells, colocalizing with constitutive secretory and endocytotic vesicle markers in nonneuroendocrine cells and with synaptophysin in cDNA-transfected epithelial cells. By immunoelectron microscopy, the majority of pantophysin reactivity is detected at vesicles with a diameter of < 100 nm that have a smooth surface and an electron-translucent interior. Using cell fractionation in combination with immunoisolation, these vesicles are enriched in a light fraction and shown to contain the cellular vSNARE cellubrevin and the ubiquitous SCAMPs in epithelial cells and synaptophysin in neuroendocrine or cDNA-transfected nonneuroendocrine cells and neuroendocrine tissues. Pantophysin is therefore a broadly distributed marker of small cytoplasmic transport vesicles independent of their content.


2002 ◽  
Vol 283 (4) ◽  
pp. G1004-G1013 ◽  
Author(s):  
Marcelo Catalán ◽  
Isabel Cornejo ◽  
Carlos D. Figueroa ◽  
María Isabel Niemeyer ◽  
Francisco V. Sepúlveda ◽  
...  

The principal function of the colon in fluid homeostasis is the absorption of NaCl and water. Apical membrane Na+ channels, Na+/H+ and Cl−/HCO[Formula: see text] exchangers, have all been postulated to mediate NaCl entry into colonocytes. The identity of the basolateral exit pathway for Cl− is unknown. We have previously demonstrated the presence of the ClC-2 transcript in the guinea pig intestine. Now we explore in more detail, the tissue and cellular distribution of chloride channel ClC-2 in the distal colon by in situ hybridization and immunohistochemistry. The patch-clamp technique was used to characterize Cl− currents in isolated surface epithelial cells from guinea pig distal colon and these were compared with those mediated by recombinant guinea pig (gp)ClC-2. ClC-2 mRNA and protein were found in the surface epithelium of the distal colon. Immunolocalization revealed that, in addition to some intracellular labeling, ClC-2 was present in the basolateral membranes but absent from the apical pole of colonocytes. Isolated surface epithelial cells exhibited hyperpolarization-activated chloride currents showing a Cl− > I− permeability and Cd2+ sensitivity. These characteristics, as well as some details of the kinetics of activation and deactivation, were very similar to those of recombinant gpClC-2 measured in parallel experiments. The presence of active ClC-2 type currents in surface colonic epithelium, coupled to a basolateral location for ClC-2 in the distal colon, suggests a role for ClC-2 channel in mediating basolateral membrane exit of Cl− as an essential step in a NaCl absorption process.


2000 ◽  
Vol 83 (4) ◽  
pp. 2349-2354 ◽  
Author(s):  
Ansalan Stewart ◽  
Robert C. Foehring

Our previous studies of calcium (Ca2+) currents in cortical pyramidal cells revealed that the percentage contribution of each Ca2+ current type to the whole cell Ca2+ current varies from cell to cell. The extent to which these currents are modulated by neurotransmitters is also variable. This study was directed at testing the hypothesis that a major source of this variability is recording from multiple populations of pyramidal cells. We used the whole cell patch-clamp technique to record from dissociated corticocortical, corticostriatal, and corticotectal projecting pyramidal cells. There were significant differences between the three pyramidal cell types in the mean percentage of L-, P-, and N-type Ca2+ currents. For both N- and P-type currents, the range of percentages expressed was small for corticostriatal and corticotectal cells as compared with cells which project to the corpus callosum or to the general population. The variance was significantly different between cell types for N- and P-type currents. These results suggest that an important source of the variability in the proportions of Ca2+ current types present in neocortical pyramidal neurons is recording from multiple populations of pyramidal cells.


1996 ◽  
Vol 271 (4) ◽  
pp. F940-F950 ◽  
Author(s):  
M. Bidet ◽  
M. Tauc ◽  
I. Rubera ◽  
G. de Renzis ◽  
C. Poujeol ◽  
...  

Chloride (Cl-) conductances were studied in primary cultures of rabbit distal convoluted tubule (very early distal “bright” convoluted tubule, DCTb) by the whole cell patch-clamp technique. We identified a Cl- current activated by 2 microM extracellular ionomycin. The kinetics of the macroscopic current were time dependent for depolarizing potentials with a slow developing component. The steady state current presented outward rectification, and the ion selectivity sequence was I- > Br- > > Cl > glutamate. The current was inhibited by 0.1 mM 5-nitro-2-(3-phenylpropyl-amino)benzoic acid, 1 mM 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid, and 1 mM diphenylamine-2-carboxylate. To identify the location of the Cl- conductance, 6-methoxy-N-(3-sulfopropyl)quinolinium fluorescence experiments were carried out in confluent cultures developed on collagen-coated permeable filters. Cl- removal from the apical solution induced a Cl- efflux that was stimulated by 10 microM forskolin. Forskolin had no effect on the basolateral Cl- permeability Cl- substitution in the basolateral solution induced an efflux stimulated by 2 microM ionomycin or 50 microM extracellular ATP Ionomycin had no effect on the apical Cl- fluxes. Thus cultured DCTb cells exhibit Ca(2+)-activated Cl- channels located in the basolateral membrane. This Cl- permeability was active at a resting membrane potential and could participate in the Cl- reabsorption across the DCTb in control conditions.


1996 ◽  
Vol 270 (2) ◽  
pp. C500-C507 ◽  
Author(s):  
G. R. Li ◽  
J. Feng ◽  
Z. Wang ◽  
S. Nattel

The present study was designed to evaluate the presence of basal, swelling-induced, and cAMP-dependent Cl- currents in human atrial myocytes studied with the whole cell patch-clamp technique. Under basal conditions, a small outwardly rectifying background conductance was noted that reversed close to 0 mV and was not altered by Cl- replacement. Isoproterenol (1 microM), forskolin (3 microM), and 8-bromoadenosine 3',5'-cyclic monophosphate (50 microM) did not increase membrane conductance, even when responsiveness to isoproterenol was confirmed by an increase in Ca2+ current and when perforated-patch techniques (nystatin) were used. Exposure to hyposmotic solutions increased cell volume and induced a whole cell conductance that showed outward rectification, was inhibited by 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid (100 microM), and responded to changes in Cl- gradient in a fashion consistent with a Cl(-)-selective conductance, with estimated relative permeabilities of 1, 0.25, and 0.07 for Cl-, methanesulfonate, and aspartate, respectively. The results suggest that human atrial cells lack basal and adenosine 3',5'-cyclic monophosphate-dependent Cl- current but manifest a substantial Cl- conductance in the presence of cell swelling.


1993 ◽  
Vol 105 (4) ◽  
pp. 1025-1043 ◽  
Author(s):  
M. Berryman ◽  
Z. Franck ◽  
A. Bretscher

Ezrin and moesin are two cytoskeletal proteins originally purified from human placenta that are 74% identical in overall protein sequence. They are believed to be membrane-cytoskeletal linking proteins because they share sequence homology with erythrocyte band 4.1 and colocalize with actin specifically in microvilli and membrane ruffles in cultured cells. To determine if ezrin and moesin share similar distributions in vivo, we studied their localizations with respect to F-actin in tissue sections. Surprisingly, ezrin and moesin exhibited very different cellular distributions. Ezrin was highly concentrated and colocalized with actin on the apical surface of many epithelial cell types. During enterocyte differentiation, the pattern of expression and redistribution of ezrin was consistent with it performing a role in microvillus assembly. Immunoelectron microscopy in differentiated cells revealed that ezrin was restricted mainly to the plasma membrane of microvilli and other actin-rich surface projections. Moesin was found in endothelial cells and was also enriched in the apical microvilli of a restricted set of epithelial cells. All polarized cell types with abundant microvilli contained one or both proteins, suggesting that ezrin and moesin perform related functions. However, the differential expression of ezrin and moesin indicates that they have distinct properties, which are uniquely adapted to specific cell types.


Sign in / Sign up

Export Citation Format

Share Document