Cultured epithelial cells derived from human foetal pancreas as a model for the study of cystic fibrosis: further analyses on the origins and nature of the cell types

1988 ◽  
Vol 90 (1) ◽  
pp. 73-77
Author(s):  
A. Harris ◽  
L. Coleman

The establishment of a tissue-culture system for epithelial cells derived from human foetal pancreas has recently been reported. Further analyses have now been made on these cells in vitro, together with parallel investigation of the distribution of different cell types within the intact foetal pancreas. Results support the view that the cultured cells are ductal in origin and nature. Pancreatic epithelial cell cultures have also been established from foetuses with cystic fibrosis.

1987 ◽  
Vol 87 (5) ◽  
pp. 695-703
Author(s):  
A. Harris ◽  
L. Coleman

A tissue culture system for epithelial cells derived from human foetal pancreas has been established. The cultured cells show many ultrastructural features of interlobular duct cells. Immunocytochemical and histochemical evidence is presented in support of the view that these cells are ductal in origin. They are likely to be one of the few cell types that express the basic defect of cystic fibrosis in vitro. The cells may be passaged and sufficient material obtained to permit biochemical and molecular biological analysis.


2003 ◽  
Vol 14 (4) ◽  
pp. 1405-1417 ◽  
Author(s):  
Lee A. Ligon ◽  
Spencer S. Shelly ◽  
Mariko Tokito ◽  
Erika L.F. Holzbaur

Several microtubule-binding proteins including EB1, dynactin, APC, and CLIP-170 localize to the plus-ends of growing microtubules. Although these proteins can bind to microtubules independently, evidence for interactions among them has led to the hypothesis of a plus-end complex. Here we clarify the interaction between EB1 and dynactin and show that EB1 binds directly to the N-terminus of the p150Glued subunit. One function of a plus-end complex may be to regulate microtubule dynamics. Overexpression of either EB1 or p150Glued in cultured cells bundles microtubules, suggesting that each may enhance microtubule stability. The morphology of these bundles, however, differs dramatically, indicating that EB1 and dynactin may act in different ways. Disruption of the dynactin complex augments the bundling effect of EB1, suggesting that dynactin may regulate the effect of EB1 on microtubules. In vitro assays were performed to elucidate the effects of EB1 and p150Glued on microtubule polymerization, and they show that p150Gluedhas a potent microtubule nucleation effect, whereas EB1 has a potent elongation effect. Overall microtubule dynamics may result from a balance between the individual effects of plus-end proteins. Differences in the expression and regulation of plus-end proteins in different cell types may underlie previously noted differences in microtubule dynamics.


TECHNOLOGY ◽  
2020 ◽  
Vol 08 (01n02) ◽  
pp. 37-49
Author(s):  
Ileana Marrero-Berrios ◽  
Anil Shrirao ◽  
Charles P. Rabolli ◽  
Rishabh Hirday ◽  
Rene S. Schloss ◽  
...  

In vitro tools, which can enable development of models that replicate the cell microenvironment associated with complex diseases such as osteoarthritis (OA), are critically needed. In OA, catabolic and inflammatory processes orchestrated by multiple cell types lead to the eventual destruction of articular cartilage. To address this need, our group developed a device that will enable investigation of complex cell systems. Our stackable tissue culture insert was fabricated and characterized with respect to biocompatibility, ease of use, and potential for tissue culture applications. The stackable tissue culture inserts can be easily modified, fabricated, and assembled into commercially available multi-well plates. In vitro studies conducted with three different cell types demonstrated high cell viability and functional secretion when cultured in the stackable inserts. Furthermore, synergistic effects when the three cell types were cultured together were observed. This demonstrates the need to more fully interrogate in vitro culture systems, and this stackable insert can provide a tool to fill the current technological void to do so.


1989 ◽  
Vol 92 (4) ◽  
pp. 687-690
Author(s):  
A. Harris ◽  
L. Coleman

A tissue culture system for epithelial cells derived from male human foetal genital ducts has been established. The cells show morphological and biochemical characteristics of ductal epithelial cells, and can be passaged and maintained in culture for considerable periods of time. These cells will provide a suitable system for investigating, by electrophysiological, biochemical and molecular biological methods, the cause of sterility in cystic fibrosis.


2019 ◽  
Vol 6 (1) ◽  
Author(s):  
Alice Zoso ◽  
Aderonke Sofoluwe ◽  
Marc Bacchetta ◽  
Marc Chanson

Abstract Pathological remodeling of the airway epithelium is commonly observed in Cystic Fibrosis (CF). The different cell types that constitute the airway epithelium are regenerated upon injury to restore integrity and maintenance of the epithelium barrier function. The molecular signature of tissue repair in CF airway epithelial cells has, however, not well been investigated in primary cultures. We therefore collected RNA-seq data from well-differentiated primary cultures of bronchial human airway epithelial cells (HAECs) of CF (F508del/F508del) and non-CF (NCF) origins before and after mechanical wounding, exposed or not to flagellin. We identified the expression changes with time of repair of genes, the products of which are markers of the different cell types that constitute the airway epithelium (basal, suprabasal, intermediate, secretory, goblet and ciliated cells as well as ionocytes). Researchers in the CF field may benefit from this transcriptomic profile, which covers the initial steps of wound repair and revealed differences in this process between CF and NCF cultures.


Cells ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 1413
Author(s):  
Tjessa Bondue ◽  
Fanny O. Arcolino ◽  
Koenraad R. P. Veys ◽  
Oyindamola C. Adebayo ◽  
Elena Levtchenko ◽  
...  

Epithelial cells exfoliated in human urine can include cells anywhere from the urinary tract and kidneys; however, podocytes and proximal tubular epithelial cells (PTECs) are by far the most relevant cell types for the study of genetic kidney diseases. When maintained in vitro, they have been proven extremely valuable for discovering disease mechanisms and for the development of new therapies. Furthermore, cultured patient cells can individually represent their human sources and their specific variants for personalized medicine studies, which are recently gaining much interest. In this review, we summarize the methodology for establishing human podocyte and PTEC cell lines from urine and highlight their importance as kidney disease cell models. We explore the well-established and recent techniques of cell isolation, quantification, immortalization and characterization, and we describe their current and future applications.


Biology ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 6
Author(s):  
Palaniselvam Kuppusamy ◽  
Dahye Kim ◽  
Ilavenil Soundharrajan ◽  
Inho Hwang ◽  
Ki Choon Choi

A co-culture system allows researchers to investigate the complex interactions between two cell types under various environments, such as those that promote differentiation and growth as well as those that mimic healthy and diseased states, in vitro. In this paper, we review the most common co-culture systems for myocytes and adipocytes. The in vitro techniques mimic the in vivo environment and are used to investigate the causal relationships between different cell lines. Here, we briefly discuss mono-culture and co-culture cell systems and their applicability to the study of communication between two or more cell types, including adipocytes and myocytes. Also, we provide details about the different types of co-culture systems and their applicability to the study of metabolic disease, drug development, and the role of secretory factors in cell signaling cascades. Therefore, this review provides details about the co-culture systems used to study the complex interactions between adipose and muscle cells in various environments, such as those that promote cell differentiation and growth and those used for drug development.


1995 ◽  
Vol 268 (1) ◽  
pp. C243-C251 ◽  
Author(s):  
M. E. Egan ◽  
E. M. Schwiebert ◽  
W. B. Guggino

When nonepithelial cell types expressing the delta F508-cystic fibrosis transmembrane conductance regulator (CFTR) mutation are grown at reduced temperatures, the mutant protein can be properly processed. The effect of low temperatures on Cl- channel activity in airway epithelial cells that endogenously express the delta F508-CFTR mutation has not been investigated. Therefore, we examined the effect of incubation temperature on both CFTR and outwardly rectifying Cl- channel (ORCC) activity in normal, in cystic fibrosis (CF)-affected, and in wild-type CFTR-complemented CF airway epithelia with use of a combination of inside-out and whole cell patch-clamp recording, 36Cl- efflux assays, and immunocytochemistry. We report that incubation of CF-affected airway epithelial cells at 25-27 degrees C is associated with the appearance of a protein kinase A-stimulated CFTR-like Cl- conductance. In addition to the appearance of CFTR Cl- channel activity, there is, however, a decrease in the number of active ORCC when cells are grown at 25-27 degrees C, suggesting that the decrease in incubation temperature may be associated with multiple alterations in ion channel expression and/or regulation in airway epithelial cells.


Molecules ◽  
2021 ◽  
Vol 26 (11) ◽  
pp. 3389
Author(s):  
Ishtiaq Ahmed ◽  
Saif Ur Rehman ◽  
Shiva Shahmohamadnejad ◽  
Muhammad Anjum Zia ◽  
Muhammad Ahmad ◽  
...  

In humans, various sites like cannabinoid receptors (CBR) having a binding affinity with cannabinoids are distributed on the surface of different cell types, where endocannabinoids (ECs) and derivatives of fatty acid can bind. The binding of these substance(s) triggers the activation of specific receptors required for various physiological functions, including pain sensation, memory, and appetite. The ECs and CBR perform multiple functions via the cannabinoid receptor 1 (CB1); cannabinoid receptor 2 (CB2), having a key effect in restraining neurotransmitters and the arrangement of cytokines. The role of cannabinoids in the immune system is illustrated because of their immunosuppressive characteristics. These characteristics include inhibition of leucocyte proliferation, T cells apoptosis, and induction of macrophages along with reduced pro-inflammatory cytokines secretion. The review seeks to discuss the functional relationship between the endocannabinoid system (ECS) and anti-tumor characteristics of cannabinoids in various cancers. The therapeutic potential of cannabinoids for cancer—both in vivo and in vitro clinical trials—has also been highlighted and reported to be effective in mice models in arthritis for the inflammation reduction, neuropathic pain, positive effect in multiple sclerosis and type-1 diabetes mellitus, and found beneficial for treating in various cancers. In human models, such studies are limited; thereby, further research is indispensable in this field to get a conclusive outcome. Therefore, in autoimmune disorders, therapeutic cannabinoids can serve as promising immunosuppressive and anti-fibrotic agents.


Sign in / Sign up

Export Citation Format

Share Document