Relative contributions of the rib cage and the diaphragm to ventilation in man

1964 ◽  
Vol 19 (4) ◽  
pp. 698-706 ◽  
Author(s):  
Edward H. Bergofsky

A plethysmographic method was used to partition the tidal volume into two components: that due to rib-cage expansion and that due to diaphragmatic descent. In 15 normal subjects, one-third of the tidal volume was effected by diaphragmatic descent during various situations, i.e., at rest, voluntary respiratory maneuvers, and breathing special gas mixtures. This technic was combined with measurements of intra-abdominal pressure changes in order to measure the extrapulmonary work done by the diaphragm. For ordinary breathing, this work was found to equal the total extrapulmonary work of breathing (rib cage plus diaphragm) measured by passive ventilation in a body respirator, indicating that the rib cage requires no work to move itself until tidal volumes greater than 1 liter are reached. thorax; work of breathing Submitted on October 24, 1963

1977 ◽  
Vol 43 (4) ◽  
pp. 600-602 ◽  
Author(s):  
K. Tusiewicz ◽  
H. Moldofsky ◽  
A. C. Bryan ◽  
M. H. Bryan

The pattern of motion of the rib cage and abdomen/diaphragm was studied in three normal subjects during sleep. Sleep state was monitored by electroencephalograph and electrocculograph. Intercostal electromyographs (EMG's) were recorded from the second interspace parasternally. Abdominothoracic motion was monitored with magnetometers and these signals calibrated by isovolume lines either immediately before going to sleep, or if there was movement, on awakening. Respiration was recorded using a jerkin plethysmograph. In the awake subject in the supine position, the rib cage contributed 44% to the tidal volume and had essentially the same contribution in quiet sleep. However, in active or rapid eye movement sleep the rib cage contribution fell to 19% of the tidal volume. This was accompanied by a marked reduction in the intercostal EMG. With the subject in the upright position the rib cage appears to be passively driven by the diaphragm. However, the present data suggest that active contraction of the intercostal muscles is required for normal rib cage expansion in the supine position.


1985 ◽  
Vol 58 (6) ◽  
pp. 2020-2026 ◽  
Author(s):  
S. N. Hussain ◽  
B. Rabinovitch ◽  
P. T. Macklem ◽  
R. L. Pardy

We assessed the effects of selective restriction of movements of the rib cage (Res,rc) and abdomen (Res,ab) on ventilatory pattern, transdiaphragmatic pressure (Pdi), and electrical activity of the diaphragm (Edi) in five normal subjects exercising at a constant work rate (80% of maximum power output) on a cycle ergometer till exhaustion. Restriction of movements was achieved by an inelastic corset applied tightly around the rib cage or abdomen. Edi was recorded by an esophageal electrode, rectified, and then integrated, and peak values during inspiration were measured. Each subject exercised at the same work rate on 3 days: with Res,rc, with Res,ab, and without restriction (control). Res,rc but not Res,ab reduced exercise time (tlim). Up to tlim, minute ventilation (VE) was similar in all three conditions. At any level of VE, however, Res,rc decreased tidal volume and inspiratory and expiratory time, whereas Res,ab had no effect on the pattern of breathing. Res,ab was associated with higher inspiratory Pdi swings at any level of VE, whereas peak Edi was similar to control. Inspiratory Pdi swings were the same with Res,rc as control, but the peak Edi for a given Pdi was greater with Res,rc (P less than 0.05). During Res,rc the abdominal pressure swings in expiration were greater than with Res,ab and control. We conclude that Res,rc altered the pattern of breathing in normal subjects in high-intensity exercise, decreased diaphragmatic contractility, increased abdominal muscle recruitment in expiration, and reduced tlim. On the other hand, Res,ab had no effect on breathing pattern or tlim but was associated with increased diaphragmatic contractility.


1972 ◽  
Vol 42 (2) ◽  
pp. 117-128 ◽  
Author(s):  
B. Bake ◽  
A. R. Fugl-Meyer ◽  
G. Grimby

1. The regional distribution of ventilation was studied with 133Xe techniques in the sitting position in six patients with complete traumatic transection of the cervical spinal cord, 3–40 months after the lesion, and in four normal subjects. The relative contributions of the rib cage and abdomen to ventilation were determined from chest-wall motions. 2. Total lung capacity (TLC) was decreased and residual volume increased in the patients. After correction for the decreased TLC, the distribution of the regional functional residual capacity in the tetraplegic patients was similar to that of the normal subjects. In the patients, where the abdomen contributed to about half of the tidal volume, decreased ventilation of basal regions was demonstrated from measurements of regional tidal volumes (Vtr) and regional 133Xe wash-in curves. 3. The distribution of ventilation in normal persons, however, was not changed by varying the relative contributions of the rib cage and abdomen to the tidal volume, as shown from Vtr and regional 133Xe wash-out measurements. 4. The results in the tetraplegic patients are interpreted as evidence of ‘small airway disease’, presumably from infection of the air way and impairment of the cough.


1993 ◽  
Vol 75 (4) ◽  
pp. 1711-1719 ◽  
Author(s):  
M. L. Coussa ◽  
C. Guerin ◽  
N. T. Eissa ◽  
C. Corbeil ◽  
M. Chasse ◽  
...  

In 10 sedated paralyzed mechanically ventilated chronic obstructive pulmonary disease (COPD) patients, we measured the inspiratory mechanical work done per breath on the respiratory system (WI,rs). We measured the tracheal and esophageal pressures to assess the lung (L) and chest wall (W) components of WI and used the technique of rapid airway occlusion during constant-flow inflation to partition WI into static work [Wst, including work due to intrinsic positive end-expiratory pressure (WPEEPi)], dynamic work due to airway resistance, and the additional resistance offered by the respiratory tissues. Although the patients were hyperinflated, the slope of the static volume-pressure relationships of the lung did not decrease with inflation volume up to 0.8 liter. WI,W was similar in COPD patients and normal subjects. All components of WI,L were higher in COPD patients. The increase in Wst,rs was due entirely to WPEEPi. Our data suggest that, during spontaneous breathing, COPD patients would probably develop inspiratory muscle fatigue, unless continuous positive airway pressure were applied to reduce WPEEPi.


1990 ◽  
Vol 68 (4) ◽  
pp. 1605-1614 ◽  
Author(s):  
R. Sartene ◽  
P. Martinot-Lagarde ◽  
M. Mathieu ◽  
A. Vincent ◽  
M. Goldman ◽  
...  

A new device that utilizes the voltages induced in separate coils encircling the rib cage and abdomen by a magnetic field is described for measurement of cross-sectional areas of the human chest wall (rib cage and abdomen) and their variation during breathing. A uniform magnetic field (1.4 X 10(-7) Tesla at 100 kHz) is produced by generating an alternating current at 100 kHz in two square coils, 1.98 m on each side, parallel to the planes of the areas to be measured and placed symmetrically cephalad and caudad to these planes at a mean distance of 0.53 m. We demonstrated that the accuracy of the device on well-defined surfaces (squares, circles, rectangles, ellipses) was within 1% in all cases. Observed errors are due primarily to small inhomogeneities of the magnetic field and variation of the orientation of the coil relative to the field. Using a second magnetic field (80 kHz) perpendicular to the first, we measured the errors due to nonparallel orientation during quiet breathing and inspiratory capacity maneuvers. In 10 normal subjects, orientation effects were less than 2% for the rib cage and less than 0.7% for the abdomen. In five of these subjects, orientation effects at functional residual capacity in lateral and seated postures were generally less than or equal to 5%, but estimated tidal volume during spontaneous breathing was comparable to measurements in the supine posture. In five curarized patients, we assessed the linearity of volume-motion relationships of the rib cage and abdomen, comparing cross-sectional area and circumference measurements. Departures from linearity using cross-sectional areas were only one-third of those using circumferences. In seven normal subjects we compared cross-sectional area measurements with respiratory inductive plethysmography (RIP) and found comparable estimates of lung volume change over a wide range of relative rib cage contributions to tidal volume (-5 to 105%), with slightly higher standard deviations for the RIP (SD = 10% for RIP; SD = 4% for cross-sectional area).


1976 ◽  
Vol 41 (5) ◽  
pp. 752-763 ◽  
Author(s):  
M. D. Goldman ◽  
G. Grimby ◽  
J. Mead

Estimates of the mechanical work of breathing derived from measurements of separate rib cage and abdominal volume displacements, each plotted against transthoracic pressure, include the elastic cost of chest wall distortion which may occur during breathing. Inspiratory work is partitioned between the diaphragm and the rib cage musculature by adding measurements of transabdominal pressure. The mechanical work of breathing derived from separate rib cage and abdominal volume-pressure (V-P) tracings (the sum of work done by the diaphragm, rib cage, and abdominal musculature) is compared with ventilatory work estimated from the Campbell diagram (which does not include any distortional work). During resting breathing the two estimates are closely comparable, consistent with little or no distortion of the chest wall during quiet breathing. As ventilation increases, the estimate developed from rib cage and abdominal tracings reveals systematically greater mechanical work than is estimated from the Campbell diagram, consistent with distortion of the chest wall from the relaxed thoracoabdominal configuration at higher levels of ventilation. At ventilations achieved during exercise, the Campbell diagram may underestimate the work of breathing by up to 25%.


1995 ◽  
Vol 82 (6) ◽  
pp. 1318-1327. ◽  
Author(s):  
F. Clergue ◽  
W. A. Whitelaw ◽  
J. C. Charles ◽  
I. Gandjbakhch ◽  
J. L. Pansard ◽  
...  

Background After upper abdominal surgery, patients have been observed to have alterations in respiratory movements of the rib cage and abdomen and respiratory shifts in pleural and abdominal pressure that suggest dysfunction of the diaphragm. The validity of making such deductions about diaphragm function from these observations is open to discussion. Methods In eight adult patients, American Society of Anesthesiologists physical status 2, scheduled for elective cardiac surgery, we measured respiratory rate, tidal volume, rib cage and abdominal cross-section changes, and esophageal (Pes) and gastric (Pga) pressures preoperatively, 1 day postoperatively, and 5 days postoperatively. These data were analyzed in detail by following the variables through each respiratory cycle. Results Mean delta Pga/delta Pes decreased from 0.73 preoperatively to -0.56 1 day postoperatively and recovered to 0.47 5 days postoperatively. Plots of Pes against Pga and rib cage against abdominal expansion (Konno-Mead diagrams) were constructed. Six patients showed a postoperative pattern of breathing similar to that seen in patients who have undergone abdominal surgery: a decrease in the ratio of delta Pga/delta Pes and a shift toward rib cage expansion, with an increase in breathing rate and a decrease in tidal volume. This change was accomplished in most cases by the use of abdominal muscles in expiration with an increase in inspiratory intercostal muscle action without an increase in diaphragm activation, that is, a shift in the normal balance of respiratory muscle use in favor of muscles other than the diaphragm. A different ventilatory pattern was observed in the other two patients, consisting of minimal rib cage excursion and a large abdominal excursion. In these cases tidal volume was generated largely by contraction and relaxation of abdominal muscles with probable reduction in diaphragm activity. In addition, five patients exhibited positive changes in Pes at the end of inspiration that corresponded to closure of the upper airway, relaxation of inspiratory muscles, and subsequent opening of the airway with sudden exhalation, producing a grunt. Conclusions Indirect measurements of respiratory muscle action based on pressure and chest wall motion are easier than are assessments based on implanted electromyogram electrodes and sonomicrometers that measure electric activity and muscle length, respectively, directly. Interpretation requires numerous assumptions and detailed analysis of phase relations among the variables. In patients after thoracic surgery, however, these measurements strongly point to a shift in the distribution of motor output toward muscles other than the diaphragm.


1981 ◽  
Vol 50 (1) ◽  
pp. 78-83 ◽  
Author(s):  
N. Wolkove ◽  
M. D. Altose ◽  
S. G. Kelsen ◽  
P. G. Kondapalli ◽  
N. S. Cherniack

Respiratory sensation was evaluated in normal subjects from their ability to quantitate changes in tidal volume. Subjects attempted to duplicate or double tidal volumes of different sizes while breathing freely or against a resistive or elastic load. When the mechanical conditions during control and test breaths were constant, tidal volume duplication was accomplished with an error of approximately 100 ml, regardless of the control volume. The error in doubling, however, increased progressively with increasing control tidal volume. There was a greater error in both volume duplication and doubling when the mechanical conditions between control and test breaths were changed. When test breaths against a load followed unloaded control breaths, tidal volume failed to double, but intrathoracic pressure changes twice exceeded control values. Conversely, when unloaded test breaths followed loaded control breaths, pressure changes underwent less than a twofold increase while tidal volume more than doubled. The results indicate that tidal volume changes are normally sensed with considerable accuracy and suggest that both tidal volume per se, as well as the forces generated by the respiratory muscles, are used in the estimation of tidal volume changes.


1991 ◽  
Vol 70 (3) ◽  
pp. 1235-1244 ◽  
Author(s):  
B. R. Boynton ◽  
G. M. Barnas ◽  
J. T. Dadmun ◽  
J. J. Fredberg

Although volumetric displacements of the chest wall are often analyzed in terms of two independent parallel pathways (rib cage and abdomen), Loring and Mead have argued that these pathways are not mechanically independent (J. Appl. Physiol. 53: 756-760, 1982). Because of its apposition with the diaphragm, the rib cage is exposed to two distinct pressure differences, one of which depends on abdominal pressure. Using the analysis of Loring and Mead as a point of departure, we developed a complementary analysis in which mechanical coupling of the rib cage, abdomen, and diaphragm is modeled by a linear translational transformer. This model has the advantage that it possesses a precise electrical analogue. Pressure differences and compartmental displacements are related by the transformation ratio (n), which is the mechanical advantage of abdominal over pleural pressure changes in displacing the rib cage. In the limiting case of very high lung volume, n----0 and the pathways uncouple. In the limit of very small lung volume, n----infinity and the pathways remain coupled; both rib cage and abdomen are driven by abdominal pressure alone, in accord with the Goldman-Mead hypothesis. A good fit was obtained between the model and the previously reported data for the human chest wall from 0.5 to 4 Hz (J. Appl. Physiol. 66:350-359, 1989). The model was then used to estimate rib cage, diaphragm, and abdominal elastance, resistance, and inertance. The abdomen was a high-elastance high-inertance highly damped compartment, and the rib cage a low-elastance low-inertance more lightly damped compartment. Our estimate that n = 1.9 is consistent with the findings of Loring and Mead and suggests substantial pathway coupling.


Sign in / Sign up

Export Citation Format

Share Document