Changes in distribution of ventilation with lung growth

1981 ◽  
Vol 51 (3) ◽  
pp. 699-705 ◽  
Author(s):  
D. M. Cooper ◽  
R. B. Mellins ◽  
A. L. Mansell

We systematically studied the effects of varying preinspiratory lung volumes and expiratory flow rates on the alveolar plateau of the single-breath oxygen test in children and adults. With inhalations of oxygen beginning at functional residual capacity (FRC) compared with residual volume (RV), the slope of phase III increased in 52 of 54 children and 6 of 6 adults (mean increase 29.2%, P less than 0.001) but then decreased at preinspiratory volumes greater than FRC. With maximal expiratory flows, the slopes were smaller than slopes from conventional maneuvers in 14 of 15 children by a mean 24.1%, P less than 0.001. These data suggest that apex-to-base differences in regional lung volume are a major determinant of the slope. Slopes (FRC maneuver) decreased as a function of the height of the children (r = -0.73, P less than 0.001), but differences in nitrogen concentration over the alveolar plateau increased with height (r = 0.70, P less than 0.001). This indicates that the apex-to-base differences in regional lung volume increase with lung size. An estimate of mixing efficiency between resident and inspired gas derived from the alveolar plateau increased with height for both RV (r = 0.40, P less than 0.005) and FRC maneuvers (r = 0.45, p less than 0.005) and was greater for FRC than RV (P less than 0.001). These increases in mixing efficiency are consistent with previously demonstrated decreases in closing volume with growth.

1989 ◽  
Vol 66 (6) ◽  
pp. 2502-2510 ◽  
Author(s):  
A. B. Crawford ◽  
D. J. Cotton ◽  
M. Paiva ◽  
L. A. Engel

To examine the effect of preinspiratory lung volume (PILV) on ventilation distribution, we performed multiple-breath N2 washouts (MBNW) in seven normal subjects breathing 1-liter tidal volumes over a wide range of PILV above closing capacity. We measured the following two independent indexes of ventilation distribution from the MBNW: 1) the normalized phase III slope of the final breaths of the washout (Snf) and 2) the alveolar mixing efficiency during that portion of the washout where 80–90% of the lung N2 had been cleared. Three of the subjects also performed single-breath N2 washouts (SBNW) by inspiring 1-liter breaths and expiring to residual volume at PILV = functional residual capacity (FRC), FRC + 1.0, and FRC - 0.5, respectively. From the SBNW we measured the phase III slope over the expired volume ranges of 0.75–1.0, 1.0–1.6, and 1.6–2.2 liters (S0.75, S1.0, and S1.6, respectively). Between a PILV of 0.92 +/- 0.09 (SE) liter above FRC and a PILV of 1.17 +/- 0.43 liter below FRC, Snf decreased by 61% (P less than 0.001) and alveolar mixing efficiency increased from 80 to 85% (P = 0.05). In addition, Snf and alveolar mixing efficiency were negatively correlated (r = 0.74). In contrast, over a similar volume range, S1.0 and S1.6 were greater at lower PILV. We conclude that, during tidal breathing in normal subjects, ventilation distribution becomes progressively more inhomogeneous at higher lung volumes over a range of volumes above closing capacity.(ABSTRACT TRUNCATED AT 250 WORDS)


1992 ◽  
Vol 73 (6) ◽  
pp. 2623-2630 ◽  
Author(s):  
D. J. Cotton ◽  
M. B. Prabhu ◽  
J. T. Mink ◽  
B. L. Graham

In patients with airflow obstruction, we found that ventilation inhomogeneity during vital capacity single-breath maneuvers was associated with decreases in the three-equation single-breath CO diffusing capacity of the lung (DLcoSB-3EQ) when breath-hold time (tBH) decreased. We postulated that this was due to a significant resistance to diffusive gas mixing within the gas phase of the lung. In this study, we hypothesized that this phenomenon might also occur in normal subjects if the breathing cycle were altered from traditional vital capacity maneuvers to those that increase ventilation inhomogeneity. In 10 normal subjects, we examined the tBH dependence of both DLcoSB-3EQ and the distribution of ventilation, measured by the mixing efficiency and the normalized phase III slope for helium. Preinspiratory lung volume (V0) was increased by keeping the maximum end-inspiratory lung volume (Vmax) constant or by increasing V0 and Vmax. When V0 increased while Vmax was kept constant, we found that the tBH-independent and the tBH-dependent components of ventilation inhomogeneity increased, but DLcoSB-3EQ was independent of V0 and tBH. Increasing V0 and Vmax did not change ventilation inhomogeneity at a tBH of 0 s, but the tBH-dependent component decreased. DLcoSB-3EQ, although independent of tBH, increased slightly with increases in Vmax. We conclude that in normal subjects increases in ventilation inhomogeneity with increases in V0 do not result in DLcoSB-3EQ becoming tBH dependent.


1980 ◽  
Vol 48 (1) ◽  
pp. 97-103 ◽  
Author(s):  
P. R. Sorenson ◽  
N. E. Robinson

Quasi-static pressure-volume curves and single-breath nitrogen washouts were performed simultaneously on eight anesthetized horses (average body wt = 485 kg) in left lateral, right lateral, prone, and supine postures (sequence randomized). The shift from prone to lateral or supine posture decreased expiratory reserve volume (ERV), vital capacity (VC), residual volume (RV), functional residual capacity (FRC), and total lung capacity (TLC); RV and FRC expressed as %TLC were unchanged, suggesting that in the lateral and supine postures a significant portion of the lung volume was not recruited by VC maneuvers. Phase III slope increased from 0.13 %N2/l in prone horses to 0.34 %N2/l in the lateral and supine positions. The onset of phase IV was not significantly different from FRC in the prone or laterally recombent animal, but exceeded FRC in the supine horse. The sequence of body positions had no effect on any of our results indicating that all changes in lung volumes and regional asynchronous ventilation c;n be reversed by placing the horse in the prone posture. The reduction in lung volume and increased asynchronous ventilation in the lateral and supine horse suggests that impaired gas exchange in anesthetized horses is predominantly related to posture, and not general anesthesia.


1978 ◽  
Vol 45 (4) ◽  
pp. 528-535 ◽  
Author(s):  
K. Rehder ◽  
T. J. Knopp ◽  
A. D. Sessler

The intrapulmonary distribution of inspired gas (ventilation/unit lung volume, VI), functional residual capacity (FRC), closing capacity (CC), and the slope of phase III were determined in five awake and five anesthetized-paralyzed volunteers who were in the prone position with the abdomen unsupported. After induction of anesthesia-paralysis, FRC was less in four of five subjects and CC was consistently less. At FRC there was no difference in the vertical gradient of regional lung volumes between the awake and anesthetized-paralyzed prone subjects. Also, there was no difference in VI between the two states. The normalized slope of phase III decreased consistently with induction of anesthesia-paralysis, but the vertical distribution of a 133Xe bolus inhaled from residual volume was not different between the two states. The data of the study are compatible with 1) a pattern of expansion of the respiratory system during anesthesia-paralysis and mechanical ventilation different than that during spontaneous breathing and 2) a more uniform intraregional distribution of inspired gas and/or a different sequence of emptying during anesthesia-paralysis.


1975 ◽  
Vol 39 (2) ◽  
pp. 235-241 ◽  
Author(s):  
R. Lemen ◽  
J. G. Jones ◽  
P. D. Graf ◽  
G. Cowan

“Closing volume” (CV) was measured by the single-breath oxygen (SBO2) test in six dogs (alloxan group) before and after alloxan 100–200 mg/kg iv) was injected. CV increased significantly (P less than 0.05) from 32 +/- 3.2% (base line) to 45 +/- 3.5 % in period 1 (0–30 min after alloxan), but vital capacity (VC), respiratory system pressure volume (PV) curves, and alveolar plateau slopes did not change. No radiologic evidence of pulmonary edema was demonstrated in two dogs studied in period 1. CV decreased to 20 +/- 3.9% during period 2 (30–80 min after alloxan) and was associated with tracheal frothing, decreased VC, changes in the PV curve, and alveolar plateau slope, as well as histologic evidence of severe pulmonary edema. CV was 29 +/- 3.0%, and there were no changes in VC, PV curves, or alveolar plateau slopes in 6 other dogs studied for 2 h (control group). CV increased during period 1 before pulmonary edema could be demonstrated by changes in VC, PV curves, or radiography, but in period 2 lung function was so altered that CV by the SBO2 technique gave no useful information.


2002 ◽  
Vol 92 (3) ◽  
pp. 1232-1238 ◽  
Author(s):  
Christopher N. Mills ◽  
Chantal Darquenne ◽  
G. Kim Prisk

We studied the effects on aerosol bolus inhalations of small changes in convective inhomogeneity induced by posture change from upright to supine in nine normal subjects. Vital capacity single-breath nitrogen washout tests were used to determine ventilatory inhomogeneity change between postures. Relative to upright, supine phase III slope was increased 33 ± 11% (mean ± SE, P < 0.05) and phase IV height increased 25 ± 11% ( P < 0.05), consistent with an increase in convective inhomogeneity likely due to increases in flow sequencing. Subjects also performed 0.5-μm-particle bolus inhalations to penetration volumes (Vp) between 150 and 1,200 ml during a standardized inhalation from residual volume to 1 liter above upright functional residual capacity. Mode shift (MS) in supine posture was more mouthward than upright at all Vp, changing by 11.6 ml at Vp = 150 ml ( P < 0.05) and 38.4 ml at Vp = 1,200 ml ( P < 0.05). MS and phase III slope changes correlated positively at deeper Vp. Deposition did not change at any Vp, suggesting that deposition did not cause the MS change. We propose that the MS change results from increased sequencing in supine vs. upright posture.


1999 ◽  
Vol 87 (4) ◽  
pp. 1491-1495 ◽  
Author(s):  
Joseph R. Rodarte ◽  
Gassan Noredin ◽  
Charles Miller ◽  
Vito Brusasco ◽  
Riccardo Pellegrino ◽  
...  

During dynamic hyperinflation with induced bronchoconstriction, there is a reduction in lung elastic recoil at constant lung volume (R. Pellegrino, O. Wilson, G. Jenouri, and J. R. Rodarte. J. Appl. Physiol. 81: 964–975, 1996). In the present study, lung elastic recoil at control end inspiration was measured in normal subjects in a volume displacement plethysmograph before and after voluntary increases in mean lung volume, which were achieved by one tidal volume increase in functional residual capacity (FRC) with constant tidal volume and by doubling tidal volume with constant FRC. Lung elastic recoil at control end inspiration was significantly decreased by ∼10% within four breaths of increasing FRC. When tidal volume was doubled, the decrease in computed lung recoil at control end inspiration was not significant. Because voluntary increases of lung volume should not produce airway closure, we conclude that stress relaxation was responsible for the decrease in lung recoil.


1994 ◽  
Vol 76 (4) ◽  
pp. 1494-1501 ◽  
Author(s):  
G. R. Soparkar ◽  
J. T. Mink ◽  
B. L. Graham ◽  
D. J. Cotton

The dynamic changes in CO concentration [CO] during a single breath could be influenced by topographic inhomogeneity in the lung or by peripheral inhomogeneity due to a gas mixing resistance in the gas phase of the lung or to serial gradients in gas diffusion. Ten healthy subjects performed single-breath maneuvers by slowly inhaling test gas from functional residual capacity to one-half inspiratory capacity and slowly exhaling to residual volume with target breath-hold times of 0, 1.5, 3, 6, and 9 s. We calculated the three-equation single-breath diffusing capacity of the lung for CO (DLSBCO-3EQ) from the mean [CO] in both the entire alveolar gas sample and in four successive equal alveolar gas samples. DLSBCO-3EQ from the entire alveolar gas sample was independent of breath-hold time. However, with 0 s of breath holding, from early alveolar gas samples DLSBCO-3EQ was reduced and from late alveolar gas samples it was increased. With increasing breath-hold time, DLSBCO-3EQ from the earliest alveolar gas sample rapidly increased, whereas from the last alveolar gas sample it rapidly decreased such that all values from the small alveolar gas samples approached DLSBCO-3EQ from the entire alveolar sample. These changes correlated with ventilation inhomogeneity, as measured by the phase III He concentration slope and the mixing efficiency, and were larger for maneuvers with inspired volumes to one-half inspiratory capacity vs. total lung capacity.(ABSTRACT TRUNCATED AT 250 WORDS)


1982 ◽  
Vol 52 (4) ◽  
pp. 914-920 ◽  
Author(s):  
E. M. Baile ◽  
P. D. Pare ◽  
L. A. Brooks ◽  
J. C. Hogg

We have examined the relationship between regional pulmonary vascular resistance (PVRr) and regional lung volume (VLr) to determine whether the decrease in blood flow in the dependent lung (zone 4) was related to lung volume. Regional blood flow (Qr) was measured with radiolabeled macroaggregates at functional residual capacity (FRC) and at transpulmonary pressure of 10 cmH2O (PL10) in 10 anesthetized supine dogs. VLr was determined at FRC by measuring lung density in frozen lung slices and was calculated at PL10 using each dog's pressure-volume curve. We found that when PVRr was expressed as a function of VLr there was not a single relationship between the two. Instead we found two separate U-shaped curves, one at FRC and one at PL10 indicating that the increased vascular resistance at the lung base remained when the lung volume was made uniform by inflation to PL10. This suggests that there is no simple relationship between VLr and PVRr.


1988 ◽  
Vol 64 (2) ◽  
pp. 642-648 ◽  
Author(s):  
S. Tomioka ◽  
S. Kubo ◽  
H. J. Guy ◽  
G. K. Prisk

To examine the mechanisms of lung filling and emptying, Ar-bolus and N2 single-breath washout tests were conducted in 10 anesthetized dogs (prone and supine) and in three of those dogs with body rotation. Transpulmonary pressure was measured simultaneously, allowing identification of the lung volume above residual volume at which there was an inflection point in the pressure-volume curve (VIP). Although phase IV for Ar was upward, phase IV for N2 was small and variable, especially in the prone position. No significant prone to supine differences in closing capacity for Ar were seen, indicating that airway closure was generated at the same lung volumes. The maximum deflections of phase IV for Ar and N2 from extrapolated phase III slopes were smaller in the prone position, suggesting more uniform tracer gas concentrations across the lungs. VIP was smaller than the closing volume for Ar, which is consistent with the effects of well-developed collateral ventilation in dogs. Body rotation tests in three dogs did not generally cause an inversion of phase III or IV. We conclude that in recumbent dogs regional distribution of ventilation is not primarily determined by the effect of gravity, but by lung, thorax, and mediastinum interactions and/or differences in regional mechanical properties of the lungs.


Sign in / Sign up

Export Citation Format

Share Document