Pulmonary injury in rats following continuous exposure to 60% O2 for 7 days

1981 ◽  
Vol 51 (5) ◽  
pp. 1220-1231 ◽  
Author(s):  
G. Hayatdavoudi ◽  
J. J. O'Neil ◽  
B. E. Barry ◽  
B. A. Freeman ◽  
J. D. Crapo

Morphological, biochemical, and physiological studies were done on rats exposed to 60% O2 for 7 days. This exposure did not induce O2 tolerance but instead caused a significant decrease in survival time of animals subsequently exposed to pure O2. The activity of lung superoxide dismutases and glucose-6-phosphate dehydrogenase were unchanged after exposure to 60% O2. A decrease in lung compliance was suggested by changes in the total lung capacity and in the pressure-volume curves of excised lungs. Ventilation of these animals with large tidal excursion resulted in pulmonary edema. Morphometric analyses revealed a significant decrease in alveolar air volume and an increase in the number of alveolar macrophages. The most significant lesions involved the pulmonary vascular bed. The volume and thickness of the capillary endothelium was decreased. There were focal areas of pericapillary fluid accumulations, and a number of the smaller vessels had perivascular edema. These findings suggest that significant pulmonary injury occurs in rats exposed to 60% O2 and that the primary site of injury is the pulmonary capillary endothelium.

PEDIATRICS ◽  
1959 ◽  
Vol 24 (2) ◽  
pp. 181-193
Author(s):  
C. D. Cook ◽  
P. J. Helliesen ◽  
L. Kulczycki ◽  
H. Barrie ◽  
L. Friedlander ◽  
...  

Tidal volume, respiratory rate and lung volumes have been measured in 64 patients with cystic fibrosis of the pancreas while lung compliance and resistance were measured in 42 of these. Serial studies of lung volumes were done in 43. Tidal volume was reduced and the respiratory rate increased only in the most severely ill patients. Excluding the three patients with lobectomies, residual volume and functional residual capacity were found to be significantly increased in 46 and 21%, respectively. These changes correlated well with the roentgenographic evaluation of emphysema. Vital capacity was significantly reduced in 34% while total lung capacity was, on the average, relatively unchanged. Seventy per cent of the 61 patients had a signficantly elevated RV/TLC ratio. Lung compliance was significantly reduced in only the most severely ill patients but resistance was significantly increased in 35% of the patients studied. The serial studies of lung volumes showed no consistent trends among the groups of patients in the period between studies. However, 10% of the surviving patients showed evidence of significant improvement while 15% deteriorated. [See Fig. 8. in Source Pdf.] Although there were individual discrepancies, there was a definite correlation between the clinical evaluation and tests of respiratory function, especially the changes in residual volume, the vital capacity, RV/ TLC ratio and the lung compliance and resistance.


Circulation ◽  
2000 ◽  
Vol 102 (16) ◽  
pp. 2011-2018 ◽  
Author(s):  
Stylianos E. Orfanos ◽  
Apostolos Armaganidis ◽  
Constantinos Glynos ◽  
Ekaterini Psevdi ◽  
Panagiotis Kaltsas ◽  
...  

Author(s):  
Anna Galytska

Actuality of Research. Scientific works proved that the greater the volume of the lungs, the better the physical abilities of athletes. So researching of the functional state of organism, namely the level of lung capacity of volleyball players is very important. The aim of the Researching. Determining of the level of lung capacity, forced air volume in 1 second and peak expiratory flow rate in volleyball qualifications. Results. The average rate of lung capacity of volleyball players is – 3,98 l, Forced air volume in 1 second – 3,32 liters, peak expiratory flow rate 5,77 – l/sec. Conclusions. The results of researching indicate that the level of vital capacity in girls is rather higher. So volleyball players (girls) have a high level of fitness of the body, providing adaptation to hight loads and hight endurance.


1986 ◽  
Vol 250 (2) ◽  
pp. E131-E136 ◽  
Author(s):  
D. J. Bassett ◽  
E. Bowen-Kelly

Continuous exposure of rats to low concentrations of ozone has previously been associated with enhanced metabolic enzyme activities, when measured in lung homogenates. In this study, metabolic rates were measured in intact perfused lungs with altered pathology brought about by 3 days continuous exposure to 0.6 ppm ozone. Increased metabolism of ozone-exposed lungs was indicated by a twofold enhancement in glucose utilization, associated with a 62% increase in lactate formation and a 166% increase in the rate of 14CO2 production from D-[U-14C]glucose from control values of 5.2 +/- 0.5 mumol lactate and 4.4 +/- 0.6 mumol 14CO2/h per lung (+/- SE, n = 4), respectively. Mitochondrial metabolism was separately assessed by measurements of 14CO2 production from [U-14C]-pyruvate, which was found not to be significantly altered by ozone exposure, although homogenate oxygen uptake in the presence of succinate was significantly enhanced by 57%. These changes in intermediary metabolism could be correlated with increased glucose carbon incorporation into lipid and elevated activity of glucose-6-phosphate dehydrogenase. The observed elevated metabolic rates were consistent with the energy and synthetic needs of a lung during repair of ozone-induced damage.


1. The lungs of four species of bats, Phyllostomus hastatus (PH, mean body mass, 98 g), Pteropus lylei (PL,456 g), Pteropus alecto (PA, 667 g), and Pteropus poliocephalus (PP, 928 g) were analysed by morphometric methods. These data increase fivefold the range of body masses for which bat lung data are available, and allow more representative allometric equations to be formulated for bats. 2. Lung volume ranged from 4.9 cm 3 for PH to 39 cm 3 for PP. The volume density of the lung parenchyma (i.e. the volume proportion of the parenchyma in the lung) ranged from 94% in PP to 89% in PH. Of the components of the parenchyma, the alveoli composed 89% and the blood capillaries about 5% . 3. The surface area of the alveoli exceeded that of the blood—gas (tissue) barrier and that of the capillary endothelium whereas the surface area of the red blood cells as well as that of the capillary endothelium was greater than that of the tissue barrier. PH had the thinnest tissue barrier (0.1204 μm) and PP had the thickest (0.3033 μm). 4. The body mass specific volume of the lung, that of the volume of pulmonary capillary blood, the surface area of the blood-gas (tissue) barrier, the diffusing capacity of the tissue barrier, and the total morphometric pulmonary diffusing capacity in PH all substantially exceeded the corresponding values of the pteropid species (i.e. PL, PA and PP). This conforms with the smaller body mass and hence higher unit mass oxygen consumption of PH, a feature reflected in the functionally superior gas exchange performance of its lungs. 5. Morphometrically, the lungs of different species of bats exhibit remarkable differences which cannot always be correlated with body mass, mode of flight and phylogeny. Conclusive explanations of these pulmonary structural disparities in different species of bats must await additional physiological and flight biomechanical studies. 6. While the slope, the scaling factor (b), of the allometric equation fitted to bat lung volume data (b = 0.82) exceeds the value for flight Vo 2max , (b = 0.70), those for the surface area of the blood-gas (tissue) barrier (b = 0.74), the pulmonary capillary blood volume (b = 0.74), and the total morphometric lung diffusing capacity for oxygen (b = 0.69) all correspond closely to the Vo 2max , value. 7 Allometric comparisons of the morphometric pulmonary parameters of bats, birds and non-flying mammals reveal that superiority of the bat lung over that of the non-flying mammal. However, the bat parameters relative to those of non-flying mammals deteriorate towards the higher body size range, because of the generally steeper slopes of the equations for non-flying mammals. Allometric comparisons also reveal that small-size bats have, in general, better adapted lungs than birds of equivalent size but at the higher body mass scale, bats are generally inferior to birds.


1977 ◽  
Vol 42 (3) ◽  
pp. 413-419 ◽  
Author(s):  
N. A. Saunders ◽  
M. F. Betts ◽  
L. D. Pengelly ◽  
A. S. Rebuck

We measured lung mechanics in seven healthy males during acute isocapnic hypoxia (PAO2 = 40–50 Torr; PACO2 = 38–42 Torr). Hypoxia was accompanied by increases in total lung capacity (mean increase +/- SD; 0.40 +/- 0.24 liters; P less than 0.005) functional residual capacity (0.34 +/- 0.25 liters; P less than 0.01) and residual volume (0.56 +/- 0.44 liters; P less than 0.02) in all subjects. Specific conductance of the lung decreased during hypoxia (P less than 0.02). The static deflation pressure-volume curve of the lung was shifted upward during hypoxia in all subjects. Resting end-expiratory recoil pressure of the lung was slightly, but not significantly lower during hypoxtic expiratory lung compliance was greater during hypoxia (0.39 +/- 0.04 l/cmH2O) than control measurements (0.31 +/- 0.05 l/cmH2O; P less than 0.005). No change was noted in dynamic lung compliance. All changes in lung mechanics were reversed within three minutes of reoxygenation. We conclude that acute isocapnic hypoxia increases total lung capacity in man and suggest that this may be due to the effect of hypoxia on the airways and pulmonary circulation.


1979 ◽  
Vol 46 (5) ◽  
pp. 927-931 ◽  
Author(s):  
Y. L. Lai

Lung volumes and respiratory pressures were measured in anesthetized male hamsters weighing an average 117 g. In 16 supine animals functional residual capacity (FRC) determined by body plethysmograph was 1.12 +/- 0.23 (SD) ml (about 20% total lung capacity, TLC) slightly and significantly larger than the FRC measured by saline displacement, 1.01 +/- 0.15 ml. Similar results were found in six prone animals. Paralysis did not significantly alter supine FRC. Contrary to published reports, pleural pressure (Ppl) estimated from esophageal pressure was negative at FRC. The fact that lung volume decreased by 0.2 ml (about 4% TLC) when the chest was opened at FRC provided additional evidence of negative Ppl at FRC. No consistent changes in the lung pressure-volume curve were found after the chest was opened. Deflation chest wall compliance just above FRC was about twice lung compliance. The vital capacity and reserve volumes in this study agreed with values reported in the literature. However, absolute lung volumes (TLC, FRC, and residual volume) were lower by about 1.4 ml, possibly because of earlier overestimates of box FRC.


1982 ◽  
Vol 52 (4) ◽  
pp. 832-837 ◽  
Author(s):  
A. Vinegar ◽  
E. E. Sinnett ◽  
P. C. Kosch

The ferret, Mustela putorius furo, is a small relatively inexpensive carnivore with minimal housing requirements. Measurements were made from anesthetized tracheotomized supine males. Values obtained during tidal breathing for six animals (576 +/- 12 g) were as follows: tidal volume, 6.06 +/- 0.30 ml; respiratory frequency, 26.7 +/- 3.9 breaths min-1; dynamic lung compliance, 2.48 +/- 0.21 ml cmH2O-1; pulmonary resistance, 22.56 +/- 1.61 cmH2O . l–1 . s. Pressure-volume curves from nine ferrets revealed almost infinitely compliant chest walls so that lung and total respiratory system curves were essentially the same. Total lung capacity (TLC, 89 +/- 5 ml) and functional residual capacity (17.8 +/- 2.0 ml) were determined by gas freeing the lungs in vivo. The TLC of these ferrets is about the same as in 2.5-kg rabbits. Maximum expiratory flow-volume curves showed peak flows of 10.1 vital capacities (VC) . s-1 at 75% VC and flows of 8.4 and 5.4 VC . s-1 at 50 and 25% VC.


Sign in / Sign up

Export Citation Format

Share Document